
Mathematical Logic

Helmut Schwichtenberg

Mathematisches Institut der Universität München
Wintersemester 2003/2004

Contents

Chapter 1. Logic 1
1. Formal Languages 2
2. Natural Deduction 4
3. Normalization 11
4. Normalization including Permutative Conversions 20
5. Notes 31

Chapter 2. Models 33
1. Structures for Classical Logic 33
2. Beth-Structures for Minimal Logic 35
3. Completeness of Minimal and Intuitionistic Logic 39
4. Completeness of Classical Logic 42
5. Uncountable Languages 44
6. Basics of Model Theory 48
7. Notes 54

Chapter 3. Computability 55
1. Register Machines 55
2. Elementary Functions 58
3. The Normal Form Theorem 64
4. Recursive Definitions 69

Chapter 4. Gödel’s Theorems 73
1. Gödel Numbers 73
2. Undefinability of the Notion of Truth 77
3. The Notion of Truth in Formal Theories 79
4. Undecidability and Incompleteness 81
5. Representability 83
6. Unprovability of Consistency 87
7. Notes 90

Chapter 5. Set Theory 91
1. Cumulative Type Structures 91
2. Axiomatic Set Theory 92
3. Recursion, Induction, Ordinals 96
4. Cardinals 116
5. The Axiom of Choice 120
6. Ordinal Arithmetic 126
7. Normal Functions 133
8. Notes 138

Chapter 6. Proof Theory 139

i

ii CONTENTS

1. Ordinals Below ε0 139
2. Provability of Initial Cases of TI 141
3. Normalization with the Omega Rule 145
4. Unprovable Initial Cases of Transfinite Induction 149

Bibliography 157

Index 159

CHAPTER 1

Logic

The main subject of Mathematical Logic is mathematical proof. In this
introductory chapter we deal with the basics of formalizing such proofs. The
system we pick for the representation of proofs is Gentzen’s natural deduc-
tion, from [8]. Our reasons for this choice are twofold. First, as the name
says this is a natural notion of formal proof, which means that the way proofs
are represented corresponds very much to the way a careful mathematician
writing out all details of an argument would go anyway. Second, formal
proofs in natural deduction are closely related (via the so-called Curry-
Howard correspondence) to terms in typed lambda calculus. This provides
us not only with a compact notation for logical derivations (which other-
wise tend to become somewhat unmanagable tree-like structures), but also
opens up a route to applying the computational techniques which underpin
lambda calculus.

Apart from classical logic we will also deal with more constructive logics:
minimal and intuitionistic logic. This will reveal some interesting aspects of
proofs, e.g. that it is possible und useful to distinguish beween existential
proofs that actually construct witnessing objects, and others that don’t. As
an example, consider the following proposition.

There are irrational numbers a, b such that ab is rational.

This can be proved as follows, by cases.

Case
√

2
√

2
is rational. Choose a =

√
2 and b =

√
2. Then a, b are

irrational and by assumption ab is rational.

Case
√

2
√

2
is irrational. Choose a =

√
2
√

2
and b =

√
2. Then by

assumption a, b are irrational and

ab =
(√

2

√
2
)
√

2
=

(√
2
)2

= 2

is rational. ¤

As long as we have not decided whether
√

2
√

2
is rational, we do not

know which numbers a, b we must take. Hence we have an example of an
existence proof which does not provide an instance.

An essential point for Mathematical Logic is to fix a formal language to
be used. We take implication → and the universal quantifier ∀ as basic. Then
the logic rules correspond to lambda calculus. The additional connectives ⊥,
∃, ∨ and ∧ are defined via axiom schemes. These axiom schemes will later
be seen as special cases of introduction and elimination rules for inductive
definitions.

1

2 1. LOGIC

1. Formal Languages

1.1. Terms and Formulas. Let a countable infinite set { vi | i ∈ N }
of variables be given; they will be denoted by x, y, z. A first order language
L then is determined by its signature, which is to mean the following.

• For every natural number n ≥ 0 a (possible empty) set of n-ary rela-
tion symbols (also called predicate symbols). 0-ary relation symbols
are called propositional symbols. ⊥ (read “falsum”) is required as
a fixed propositional symbol. The language will not, unless stated
otherwise, contain = as a primitive.

• For every natural number n ≥ 0 a (possible empty) set of n-ary
function symbols. 0-ary function symbols are called constants.

We assume that all these sets of variables, relation and function symbols are
disjoint.

For instance the language LG of group theory is determined by the sig-
nature consisting of the following relation and function symbols: the group
operation ◦ (a binary function symbol), the unit e (a constant), the inverse
operation −1 (a unary function symbol) and finally equality = (a binary
relation symbol).

L-terms are inductively defined as follows.

• Every variable is an L-term.
• Every constant of L is an L-term.
• If t1, . . . , tn are L-terms and f is an n-ary function symbol of L

with n ≥ 1, then f(t1, . . . , tn) is an L-term.

From L-terms one constructs L-prime formulas, also called atomic for-
mulas of L: If t1, . . . , tn are terms and R is an n-ary relation symbol of L,
then R(t1, . . . , tn) is an L-prime formula.

L-formulas are inductively defined from L-prime formulas by

• Every L-prime formula is an L-formula.
• If A and B are L-formulas, then so are (A → B) (“if A, then B”),

(A ∧ B) (“A and B”) and (A ∨ B) (“A or B”).
• If A is an L-formula and x is a variable, then ∀xA (“for all x, A

holds”) and ∃xA (“there is an x such that A”) are L-formulas.

Negation, classical disjunction, and the classical existential quantifier
are defined by

¬A := A → ⊥,

A ∨cl B := ¬A → ¬B → ⊥,

∃clxA := ¬∀x¬A.

Usually we fix a language L, and speak of terms and formulas instead
of L-terms and L-formulas. We use

r, s, t for terms,
x, y, z for variables,
c for constants,
P, Q, R for relation symbols,
f, g, h for function symbols,
A, B, C, D for formulas.

1. FORMAL LANGUAGES 3

Definition. The depth dp(A) of a formula A is the maximum length
of a branch in its construction tree. In other words, we define recursively
dp(P) = 0 for atomic P , dp(A ◦ B) = max(dp(A), dp(B)) + 1 for binary
operators ◦, dp(◦A) = dp(A) + 1 for unary operators ◦.

The size or length |A| of a formula A is the number of occurrences of
logical symbols and atomic formulas (parentheses not counted) in A: |P | = 1
for P atomic, |A ◦B| = |A|+ |B|+ 1 for binary operators ◦, | ◦A| = |A|+ 1
for unary operators ◦.

One can show easily that |A| + 1 ≤ 2dp(A)+1.

Notation (Saving on parentheses). In writing formulas we save on
parentheses by assuming that ∀,∃,¬ bind more strongly than ∧,∨, and
that in turn ∧,∨ bind more strongly than →,↔ (where A ↔ B abbreviates
(A → B) ∧ (B → A)). Outermost parentheses are also usually dropped.
Thus A ∧ ¬B → C is read as ((A ∧ (¬B)) → C). In the case of iterated
implications we sometimes use the short notation

A1 → A2 → . . . An−1 → An for A1 → (A2 → . . . (An−1 → An) . . .).

To save parentheses in quantified formulas, we use a mild form of the dot
notation: a dot immediately after ∀x or ∃x makes the scope of that quantifier
as large as possible, given the parentheses around. So ∀x.A → B means
∀x(A → B), not (∀xA) → B.

We also save on parentheses by writing e.g. Rxyz, Rt0t1t2 instead of
R(x, y, z), R(t0, t1, t2), where R is some predicate symbol. Similarly for a
unary function symbol with a (typographically) simple argument, so fx for
f(x), etc. In this case no confusion will arise. But readability requires that
we write in full R(fx, gy, hz), instead of Rfxgyhz.

Binary function and relation symbols are usually written in infix nota-
tion, e.g. x + y instead of +(x, y), and x < y instead of <(x, y). We write
t 6= s for ¬(t = s) and t 6< s for ¬(t < s).

1.2. Substitution, Free and Bound Variables. Expressions E , E ′

which differ only in the names of bound variables will be regarded as iden-
tical. This is sometimes expressed by saying that E and E ′ are α-equivalent.
In other words, we are only interested in expressions “modulo renaming of
bound variables”. There are methods of finding unique representatives for
such expressions, for example the namefree terms of de Bruijn [7]. For the
human reader such representations are less convenient, so we shall stick to
the use of bound variables.

In the definition of “substitution of expression E ′ for variable x in ex-
pression E”, either one requires that no variable free in E ′ becomes bound
by a variable-binding operator in E , when the free occurrences of x are re-
placed by E ′ (also expressed by saying that there must be no “clashes of
variables”), “E ′ is free for x in E”, or the substitution operation is taken to
involve a systematic renaming operation for the bound variables, avoiding
clashes. Having stated that we are only interested in expressions modulo
renaming bound variables, we can without loss of generality assume that
substitution is always possible.

4 1. LOGIC

Also, it is never a real restriction to assume that distinct quantifier
occurrences are followed by distinct variables, and that the sets of bound
and free variables of a formula are disjoint.

Notation. “FV” is used for the (set of) free variables of an expression;
so FV(t) is the set of variables free in the term t, FV(A) the set of variables
free in formula A etc.

E [x := t] denotes the result of substituting the term t for the variable
x in the expression E . Similarly, E [~x := ~t] is the result of simultaneously
substituting the terms ~t = t1, . . . , tn for the variables ~x = x1, . . . , xn, respec-
tively.

Locally we shall adopt the following convention. In an argument, once
a formula has been introduced as A(x), i.e., A with a designated variable x,
we write A(t) for A[x := t], and similarly with more variables. ¤

1.3. Subformulas. Unless stated otherwise, the notion of subformula
we use will be that of a subformula in the sense of Gentzen.

Definition. (Gentzen) subformulas of A are defined by

(a) A is a subformula of A;
(b) if B ◦ C is a subformula of A then so are B, C, for ◦ = →,∧,∨;
(c) if ∀xB or ∃xB is a subformula of A, then so is B[x := t], for all t free

for x in B.

If we replace the third clause by:

(c)′ if ∀xB or ∃xB is a subformula of A then so is B,

we obtain the notion of literal subformula.

Definition. The notions of positive, negative, strictly positive subfor-
mula are defined in a similar style:

(a) A is a positive and a stricly positive subformula of itself;
(b) if B ∧C or B ∨C is a positive [negative, strictly positive] subformula of

A, then so are B, C;
(c) if ∀xB or ∃xB is a positive [negative, strictly positive] subformula of A,

then so is B[x := t];
(d) if B → C is a positive [negative] subformula of A, then B is a negative

[positive] subformula of A, and C is a positive [negative] subformula of
A;

(e) if B → C is a strictly positive subformula of A, then so is C.

A strictly positive subformula of A is also called a strictly positive part
(s.p.p.) of A. Note that the set of subformulas of A is the union of the
positive and negative subformulas of A. Literal positive, negative, strictly
positive subformulas may be defined in the obvious way by restricting the
clause for quantifiers.

Example. (P → Q) → R ∧ ∀xR′(x) has as s.p.p.’s the whole formula,
R ∧ ∀xR′(x), R, ∀xR′(x), R′(t). The positive subformulas are the s.p.p.’s
and in addition P ; the negative subformulas are P → Q, Q.

2. Natural Deduction

We introduce Gentzen’s system of natural deduction. To allow a direct
correspondence with the lambda calculus, we restrict the rules used to those

2. NATURAL DEDUCTION 5

for the logical connective → and the universal quantifier ∀. The rules come
in pairs: we have an introduction and an elimination rule for each of these.
The other logical connectives are introduced by means of axiom schemes:
this is done for conjunction ∧, disjunction ∨ and the existential quantifier
∃. The resulting system is called minimal logic; it has been introduced by
Johannson in 1937 [14]. Notice that no negation is present.

If we then go on and require the ex-falso-quodlibet scheme for the nullary
propositional symbol ⊥ (“falsum”), we can embed intuitionistic logic. To
obtain classical logic, we add as an axiom scheme the principle of indirect
proof , also called stability . However, to obtain classical logic it suffices to
restrict to the language based on →, ∀, ⊥ and ∧; we can introduce classical
disjunction ∨cl and the classical existential quantifier ∃cl via their (classical)
definitions above. For these the usual introduction and elimination proper-
ties can then be derived.

2.1. Examples of Derivations. Let us start with some examples for
natural proofs. Assume that a first order language L is given. For simplicity
we only consider here proofs in pure logic, i.e. without assumptions (axioms)
on the functions and relations used.

(1) (A → B → C) → (A → B) → A → C

Assume A → B → C. To show: (A → B) → A → C. So assume A → B.
To show: A → C. So finally assume A. To show: C. We have A, by the last
assumption. Hence also B → C, by the first assumption, and B, using the
next to last assumption. From B → C and B we obtain C, as required. ¤

(2) (∀x.A → B) → A → ∀xB, if x /∈ FV(A).

Assume ∀x.A → B. To show: A → ∀xB. So assume A. To show: ∀xB.
Let x be arbitrary; note that we have not made any assumptions on x. To
show: B. We have A → B, by the first assumption. Hence also B, by the
second assumption. ¤

(3) (A → ∀xB) → ∀x.A → B, if x /∈ FV(A).

Assume A → ∀xB. To show: ∀x.A → B. Let x be arbitrary; note that we
have not made any assumptions on x. To show: A → B. So assume A. To
show: B. We have ∀xB, by the first and second assumption. Hence also
B. ¤

A characteristic feature of these proofs is that assumptions are intro-
duced and eliminated again. At any point in time during the proof the free
or “open” assumptions are known, but as the proof progresses, free assump-
tions may become cancelled or “closed” because of the implies-introduction
rule.

We now reserve the word proof for the informal level; a formal represen-
tation of a proof will be called a derivation.

An intuitive way to communicate derivations is to view them as labelled
trees. The labels of the inner nodes are the formulas derived at those points,
and the labels of the leaves are formulas or terms. The labels of the nodes
immediately above a node ν are the premises of the rule application, the
formula at node ν is its conclusion. At the root of the tree we have the
conclusion of the whole derivation. In natural deduction systems one works

6 1. LOGIC

with assumptions affixed to some leaves of the tree; they can be open or else
closed .

Any of these assumptions carries a marker . As markers we use as-
sumption variables ¤0, ¤1, . . . , denoted by u, v, w, u0, u1, The (previ-
ous) variables will now often be called object variables, to distinguish them
from assumption variables. If at a later stage (i.e. at a node below an as-
sumption) the dependency on this assumption is removed, we record this by
writing down the assumption variable. Since the same assumption can be
used many times (this was the case in example (1)), the assumption marked
with u (and communicated by u : A) may appear many times. However, we
insist that distinct assumption formulas must have distinct markers.

An inner node of the tree is understood as the result of passing form
premises to a conclusion, as described by a given rule. The label of the node
then contains in addition to the conclusion also the name of the rule. In some
cases the rule binds or closes an assumption variable u (and hence removes
the dependency of all assumptions u : A marked with that u). An application
of the ∀-introduction rule similarly binds an object variable x (and hence
removes the dependency on x). In both cases the bound assumption or
object variable is added to the label of the node.

2.2. Introduction and Elimination Rules for → and ∀. We now
formulate the rules of natural deduction. First we have an assumption rule,
that allows an arbitrary formula A to be put down, together with a marker
u:

u : A Assumption

The other rules of natural deduction split into introduction rules (I-rules
for short) and elimination rules (E-rules) for the logical connectives → and
∀. For implication → there is an introduction rule →+u and an elimination
rule →−, also called modus ponens. The left premise A → B in →− is
called major premise (or main premise), and the right premise A minor
premise (or side premise). Note that with an application of the →+u-rule
all assumptions above it marked with u : A are cancelled.

[u : A]

| M

B →+uA → B

| M

A → B

| N

A →−
B

For the universal quantifier ∀ there is an introduction rule ∀+x and an
elimination rule ∀−, whose right premise is the term r to be substituted.
The rule ∀+x is subject to the following (Eigen-) variable condition: The
derivation M of the premise A should not contain any open assumption with
x as a free variable.

| M

A ∀+x∀xA

| M

∀xA r ∀−
A[x := r]

We now give derivations for the example formulas (1) – (3). Since in
many cases the rule used is determined by the formula on the node, we

2. NATURAL DEDUCTION 7

suppress in such cases the name of the rule,

u : A → B → C w : A
B → C

v : A → B w : A
B

C →+wA → C →+v
(A → B) → A → C

→+u
(A → B → C) → (A → B) → A → C

(1)

u : ∀x.A → B x
A → B v : A

B ∀+x∀xB →+vA → ∀xB →+u
(∀x.A → B) → A → ∀xB

(2)

Note here that the variable condition is satisfied: x is not free in A (and
also not free in ∀x.A → B).

u : A → ∀xB v : A
∀xB x

B →+vA → B ∀+x∀x.A → B →+u
(A → ∀xB) → ∀x.A → B

(3)

Here too the variable condition is satisfied: x is not free in A.

2.3. Axiom Schemes for Disjunction, Conjunction, Existence

and Falsity. We follow the usual practice of considering all free variables
in an axiom as universally quantified outside.

Disjunction. The introduction axioms are

∨+
0 : A → A ∨ B

∨+
1 : B → A ∨ B

and the elimination axiom is

∨− : (A → C) → (B → C) → A ∨ B → C.

Conjunction. The introduction axiom is

∧+ : A → B → A ∧ B

and the elimination axiom is

∧− : (A → B → C) → A ∧ B → C.

Existential Quantifier. The introduction axiom is

∃+ : A → ∃xA

and the elimination axiom is

∃− : (∀x.A → B) → ∃xA → B (x not free in B).

8 1. LOGIC

Falsity. This example is somewhat extreme, since there is no introduc-
tion axiom; the elimination axiom is

⊥− : ⊥ → A.

In the literature this axiom is frequently called “ex-falso-quodlibet”, written
Efq. It clearly is derivable from its instances ⊥ → R~x, for every relation
symbol R.

Equality. The introduction axiom is

Eq+ : Eq(x, x)

and the elimination axiom is

Eq− : ∀xR(x, x) → Eq(x, y) → R(x, y).

It is an easy exercise to show that the usual equality axioms can be derived.
All these axioms can be seen as special cases of a general scheme, that

of an inductively defined predicate, which is defined by some introduction
rules and one elimination rule. We will study this kind of definition in full
generality in Chapter 6. Eq(x, y) is a binary such predicate, ⊥ is a nullary
one, and A ∨ B another nullary one which however depends on the two
parameter predicates A and B.

The desire to follow this general pattern is also the reason that we have
chosen our rather strange ∧−-axiom, instead of the more obvious A∧B → A
and A ∧ B → B (which clearly are equivalent).

2.4. Minimal, Intuitionistic and Classical Logic. We write ` A
and call A derivable (in minimal logic), if there is a derivation of A without
free assumptions, from the axioms of 2.3 using the rules from 2.2, but without
using the ex-falso-quodlibet axiom, i.e., the elimination axiom ⊥− for ⊥. A
formula B is called derivable from assumptions A1, . . . , An, if there is a
derivation (without ⊥−) of B with free assumptions among A1, . . . , An. Let
Γ be a (finite or infinite) set of formulas. We write Γ ` B if the formula B
is derivable from finitely many assumptions A1, . . . , An ∈ Γ.

Similarly we write `i A and Γ `i B if use of the ex-falso-quodlibet axiom
is allowed; we then speak of derivability in intuitionistic logic.

For classical logic there is no need to use the full set of logical connectives:
classical disjunction as well as the classical existential quantifier are defined,
by A∨clB := ¬A → ¬B → ⊥ and ∃clxA := ¬∀x¬A. Moreover, when dealing
with derivability we can even get rid of conjunction; this can be seen from
the following lemma:

Lemma (Elimination of ∧). For each formula A built with the connec-
tives →,∧,∀ there are formulas A1, . . . , An without ∧ such that ` A ↔
∧∧n

i=1 Ai.

Proof. Induction on A. Case R~t. Take n = 1 and A1 := R~t. Case

A∧B. By induction hypothesis, we have A1, . . . , An and B1, . . . , Bm. Take
A1, . . . , An, B1, . . . , Bm. Case A → B. By induction hypothesis, we have
A1, . . . , An and B1, . . . , Bm. For the sake of notational simplicity assume
n = 2 and m = 3. Then

` (A1 ∧ A2 → B1 ∧ B2 ∧ B3)

2. NATURAL DEDUCTION 9

↔ (A1 → A2 → B1) ∧ (A1 → A2 → B2) ∧ (A1 → A2 → B3).

Case ∀xA. By induction hypothesis for A, we have A1, . . . , An. Take
∀xA1, . . . ,∀xAn, for

` ∀x
n∧∧

i=1
Ai ↔

n∧∧

i=1
∀xAi.

This concludes the proof. ¤

For the rest of this section, let us restrict to the language based on →,
∀, ⊥ and ∧. We obtain classical logic by adding, for every relation symbol
R distinct from ⊥, the principle of indirect proof expressed as the so-called
“stability axiom” (StabR):

¬¬R~x → R~x.

Let

Stab := { ∀~x.¬¬R~x → R~x | R relation symbol distinct from ⊥}.
We call the formula A classically derivable and write `c A if there is a
derivation of A from stability assumptions StabR. Similarly we define clas-
sical derivability from Γ and write Γ `c A, i.e.

Γ `c A :⇐⇒ Γ ∪ Stab ` A.

Theorem (Stability, or Principle of Indirect Proof). For every formula
A (of our language based on →, ∀, ⊥ and ∧),

`c ¬¬A → A.

Proof. Induction on A. For simplicity, in the derivation to be con-
structed we leave out applications of →+ at the end. Case R~t with R
distinct from ⊥. Use StabR. Case ⊥. Observe that ¬¬⊥ → ⊥ = ((⊥ →
⊥) → ⊥) → ⊥. The desired derivation is

v : (⊥ → ⊥) → ⊥
u : ⊥ →+u⊥ → ⊥

⊥
Case A → B. Use ` (¬¬B → B) → ¬¬(A → B) → A → B; a derivation is

u : ¬¬B → B

v : ¬¬(A → B)

u1 : ¬B
u2 : A → B w : A

B
⊥ →+u2¬(A → B)

⊥ →+u1¬¬B
B

Case ∀xA. Clearly it suffices to show ` (¬¬A → A) → ¬¬∀xA → A; a
derivation is

u : ¬¬A → A

v : ¬¬∀xA

u1 : ¬A
u2 : ∀xA x

A
⊥ →+u2¬∀xA

⊥ →+u1¬¬A
A

10 1. LOGIC

The case A ∧ B is left to the reader. ¤

Notice that clearly `c ⊥ → A, for stability is stronger:

| MStab

¬¬A → A
u : ⊥ →+v¬A
¬¬A

A →+u⊥ → A

where MStab is the (classical) derivation of stability.
Notice also that even for the →, ⊥-fragment the inclusion of minimal

logic in intuitionistic logic, and of the latter in classical logic are proper.
Examples are

6` ⊥ → P, but `i ⊥ → P,

6`i ((P → Q) → P) → P, but `c ((P → Q) → P) → P.

Non-derivability can be proved by means of countermodels, using a semantic
characterization of derivability; this will be done in Chapter 2. `i ⊥ → P
is obvious, and the Peirce formula ((P → Q) → P) → P can be derived in
minimal logic from ⊥ → Q and ¬¬P → P , hence is derivable in classical
logic.

2.5. Negative Translation. We embedd classical logic into minimal
logic, via the so-called negative (or Gödel-Gentzen) translation.

A formula A is called negative, if every atomic formula of A distinct
from ⊥ occurs negated, and A does not contain ∨, ∃.

Lemma. For negative A, ` ¬¬A → A.

Proof. This follows from the proof of the stability theorem, using `
¬¬¬R~t → ¬R~t. ¤

Since ∨, ∃ do not occur in formulas of classical logic, in the rest of this
section we consider the language based on →, ∀, ⊥ and ∧ only.

Definition (Negative translation g of Gödel-Gentzen).

(R~t)g := ¬¬R~t (R distinct from ⊥)

⊥g := ⊥,

(A ∧ B)g := Ag ∧ Bg,

(A → B)g := Ag → Bg,

(∀xA)g := ∀xAg.

Theorem. For all formulas A,

(a) `c A ↔ Ag,
(b) Γ `c A iff Γg ` Ag, where Γg := {Bg | B ∈ Γ }.

Proof. (a). The claim follows from the fact that `c is compatible with
equivalence. 2. ⇐. Obvious ⇒. By induction on the classical deriva-
tion. For a stability assumption ¬¬R~t → R~t we have (¬¬R~t → R~t)g =

3. NORMALIZATION 11

¬¬¬¬R~t → ¬¬R~t, and this is easily derivable. Case →+. Assume

[u : A]

D
B →+uA → B

Then we have by induction hypothesis

u : Ag

Dg

Bg
hence

[u : Ag]

Dg

Bg

→+uAg → Bg

Case →−. Assume
D0

A → B

D1

A
B

Then we have by induction hypothesis

Dg
0

Ag → Bg

Dg
1

Ag
hence

Dg
0

Ag → Bg

Dg
1

Ag

Bg

The other cases are treated similarly. ¤

Corollary (Embedding of classical logic). For negative A,

`c A ⇐⇒ ` A.

Proof. By the theorem we have `c A iff ` Ag. Since A is negative,
every atom distinct from ⊥ in A must occur negated, and hence in Ag it
must appear in threefold negated form (as ¬¬¬R~t). The claim follows from
` ¬¬¬R~t ↔ ¬R~t. ¤

Since every formula is classically equivalent to a negative formula, we
have achieved an embedding of classical logic into minimal logic.

Note that 6` ¬¬P → P (as we shall show in Chapter 2). The corollary
therefore does not hold for all formulas A.

3. Normalization

We show in this section that every derivation can be transformed by
appropriate conversion steps into a normal form. A derivation in normal
form does not make “detours”, or more precisely, it cannot occur that an
elimination rule immediately follows an introduction rule. Derivations in
normal form have many pleasant properties.

Uniqueness of normal form will be shown by means of an application of
Newman’s lemma; we will also introduce and discuss the related notions of
confluence, weak confluence and the Church-Rosser property.

We finally show that the requirement to give a normal derivation of
a derivable formula can sometimes be unrealistic. Following Statman [25]
and Orevkov [19] we give examples of formulas Ck which are easily derivable
with non-normal derivations (of size linear in k), but which require a non-
elementary (in k) size in any normal derivation.

This can be seen as a theoretical explanation of the essential role played
by lemmas in mathematical arguments.

12 1. LOGIC

3.1. Conversion. A conversion eliminates a detour in a derivation,
i.e., an elimination immediately following an introduction. We consider the
following conversions:

→-conversion.

[u : A]

| M

B →+uA → B

| N

A →−
B

7→
| N

A
| M

B

∀-conversion.

| M

A ∀+x∀xA r ∀−
A[x := r]

7→ | M ′

A[x := r]

3.2. Derivations as Terms. It will be convenient to represent deriva-
tions as terms, where the derived formula is viewed as the type of the term.
This representation is known under the name Curry-Howard correspondence.

We give an inductive definition of derivation terms in the table below,
where for clarity we have written the corresponding derivations to the left.
For the universal quantifier ∀ there is an introduction rule ∀+x and an
elimination rule ∀−, whose right premise is the term r to be substituted.
The rule ∀+x is subject to the following (Eigen-) variable condition: The
derivation term M of the premise A should not contain any open assumption
with x as a free variable.

3.3. Reduction, Normal Form. Although every derivation term car-
ries a formula as its type, we shall usually leave these formulas implicit and
write derivation terms without them.

Notice that every derivation term can be written uniquely in one of the
forms

u ~M | λvM | (λvM)N~L,

where u is an assumption variable or assumption constant, v is an assump-
tion variable or object variable, and M , N , L are derivation terms or object
terms.

Here the final form is not normal: (λvM)N~L is called β-redex (for “re-
ducible expression”). The conversion rule is

(λvM)N 7→β M [v := N].

Notice that in a substitution M [v := N] with M a derivation term and
v an object variable, one also needs to substitute in the formulas of M .

The closure of the conversion relation 7→β is defined by

• If M 7→β M ′, then M → M ′.
• If M → M ′, then also MN → M ′N , NM → NM ′, λvM → λvM ′

(inner reductions).

So M → N means that M reduces in one step to N , i.e., N is obtained
from M by replacement of (an occurrence of) a redex M ′ of M by a con-
versum M ′′ of M ′, i.e. by a single conversion. The relation →+ (“properly

3. NORMALIZATION 13

derivation term

u : A uA

[u : A]

| M

B →+uA → B

(λuAMB)A→B

| M

A → B

| N

A →−
B

(MA→BNA)B

| M

A ∀+x (with var.cond.)
∀xA

(λxMA)∀xA (with var.cond.)

| M

∀xA r ∀−
A[x := r]

(M∀xAr)A[x:=r]

Table 1. Derivation terms for → and ∀

reduces to”) is the transitive closure of → and →∗ (“reduces to”) is the re-
flexive and transitive closure of →. The relation →∗ is said to be the notion
of reduction generated by 7→. ←, ←+, ←∗ are the relations converse to
→,→+,→∗, respectively.

A term M is in normal form, or M is normal , if M does not contain a
redex. M has a normal form if there is a normal N such that M →∗ N .

A reduction sequence is a (finite or infinite) sequence M0 → M1 →
M2 . . . such that Mi → Mi+1, for all i.

Finite reduction sequences are partially ordered under the initial part
relation; the collection of finite reduction sequences starting from a term
M forms a tree, the reduction tree of M . The branches of this tree may
be identified with the collection of all infinite and all terminating finite
reduction sequences.

A term is strongly normalizing if its reduction tree is finite.

Example.

(λxλyλz.xz(yz))(λuλv u)(λu′λv′ u′) →
(λyλz.(λuλv u)z(yz))(λu′λv′ u′) →

14 1. LOGIC

(λyλz.(λv z)(yz))(λu′λv′ u′) →
(λyλz z)(λu′λv′ u′) → λz z.

Lemma (Substitutivity of →). (a) If M → M ′, then MN → M ′N .
(b) If N → N ′, then MN → MN ′.
(c) If M → M ′, then M [v := N] → M ′[v := N].
(d) If N → N ′, then M [v := N] →∗ M [v := N ′].

Proof. (a) and (c) are proved by induction on M → M ′; (b) and (d)
by induction on M . Notice that the reason for →∗ in (d) is the fact that v
may have many occurrences in M . ¤

3.4. Strong Normalization. We show that every term is strongly nor-
malizing.

To this end, define by recursion on k a relation sn(M, k) between terms
M and natural numbers k with the intention that k is an upper bound on
the number of reduction steps up to normal form.

sn(M, 0) :⇐⇒ M is in normal form,

sn(M, k + 1) :⇐⇒ sn(M ′, k) for all M ′ such that M → M ′.

Clearly a term is strongly normalizable if there is a k such that sn(M, k).
We first prove some closure properties of the relation sn.

Lemma (Properties of sn). (a) If sn(M, k), then sn(M, k + 1).
(b) If sn(MN, k), then sn(M, k).
(c) If sn(Mi, ki) for i = 1 . . . n, then sn(uM1 . . .Mn, k1 + · · · + kn).
(d) If sn(M, k), then sn(λvM, k).

(e) If sn(M [v := N]~L, k) and sn(N, l), then sn((λvM)N~L, k + l + 1).

Proof. (a). Induction on k. Assume sn(M, k). We show sn(M, k + 1).
So let M ′ with M → M ′ be given; because of sn(M, k) we must have k > 0.
We have to show sn(M ′, k). Because of sn(M, k) we have sn(M ′, k−1), hence
by induction hypothesis sn(M ′, k).

(b). Induction on k. Assume sn(MN, k). We show sn(M, k). In case k =
0 the term MN is normal, hence also M is normal and therefore sn(M, 0).
So let k > 0 and M → M ′; we have to show sn(M ′, k − 1). From M →
M ′ we have MN → M ′N . Because of sn(MN, k) we have by definition
sn(M ′N, k − 1), hence sn(M ′, k − 1) by induction hypothesis.

(c). Assume sn(Mi, ki) for i = 1 . . . n. We show sn(uM1 . . .Mn, k) with
k := k1 + · · · + kn. Again we employ induction on k. In case k = 0 all
Mi are normal, hence also uM1 . . .Mn. So let k > 0 and uM1 . . .Mn →
M ′. Then M ′ = uM1 . . .M ′

i . . .Mn with Mi → M ′
i ; We have to show

sn(uM1 . . .M ′
i . . .Mn, k − 1). Because of Mi → M ′

i and sn(Mi, ki) we have
ki > 0 and sn(M ′

i , ki − 1), hence sn(uM1 . . .M ′
i . . .Mn, k − 1) by induction

hypothesis.
(d). Assume sn(M, k). We have to show sn(λvM, k). Use induction on

k. In case k = 0 M is normal, hence λvM is normal, hence sn(λvM, 0). So
let k > 0 and λvM → L. Then L has the form λvM ′ with M → M ′. So
sn(M ′, k − 1) by definition, hence sn(λvM ′, k) by induction hypothesis.

(e). Assume sn(M [v := N]~L, k) and sn(N, l). We need to show that

sn((λvM)N~L, k + l + 1). We use induction on k + l. In case k + l = 0 the

3. NORMALIZATION 15

term N and M [v := N]~L are normal, hence also M and all Li. Hence there

is exactly one term K such that (λvM)N~L → K, namely M [v := N]~L, and

this K is normal. So let k + l > 0 and (λvM)N~L → K. We have to show
sn(K, k + l).

Case K = M [v := N]~L, i.e. we have a head conversion. From sn(M [v :=

N]~L, k) we obtain sn(M [v := N]~L, k + l) by (a).

Case K = (λvM ′)N~L with M → M ′. Then we have M [v := N]~L →
M ′[v := N]~L. Now sn(M [v := N]~L, k) implies k > 0 and sn(M ′[v :=

N]~L, k − 1). The induction hypothesis yields sn((λvM ′)N~L, k − 1 + l + 1).

Case K = (λvM)N ′~L with N → N ′. Now sn(N, l) implies l > 0 and

sn(N ′, l − 1). The induction hypothesis yields sn((λvM)N ′~L, k + l − 1 + 1),

since sn(M [v := N ′]~L, k) by (a),

Case K = (λvM)N~L′ with Li → L′
i for some i and Lj = L′

j for j 6= i.

Then we have M [v := N]~L → M [v := N]~L′. Now sn(M [v := N]~L, k)

implies k > 0 and sn(M [v := N]~L′, k − 1). The induction hypothesis yields

sn((λvM)N~L′, k − 1 + l + 1). ¤

The essential idea of the strong normalization proof is to view the last
three closure properties of sn from the preceding lemma without the infor-
mation on the bounds as an inductive definition of a new set SN:

~M ∈ SN (Var)
u ~M ∈ SN

M ∈ SN (λ)
λvM ∈ SN

M [v := N]~L ∈ SN N ∈ SN
(β)

(λvM)N~L ∈ SN

Corollary. For every term M ∈ SN there is a k ∈ N such that
sn(M, k). Hence every term M ∈ SN is strongly normalizable

Proof. By induction on M ∈ SN, using the previous lemma. ¤

In what follows we shall show that every term is in SN and hence is
strongly normalizable. Given the definition of SN we only have to show
that SN is closed under application. In order to prove this we must prove
simultaneously the closure of SN under substitution.

Theorem (Properties of SN). For all formulas A, derivation terms M ∈
SN and NA ∈ SN the following holds.

(a) M [v := N] ∈ SN.
(a’) M [x := r] ∈ SN.
(b) Suppose M derives A → B. Then MN ∈ SN.
(b’) Suppose M derives ∀xA. Then Mr ∈ SN.

Proof. By course-of-values induction on dp(A), with a side induction
on M ∈ SN. Let NA ∈ SN. We distinguish cases on the form of M .

Case u ~M by (Var) from ~M ∈ SN. (a). The SIH(a) (SIH means side

induction hypothesis) yields Mi[v := N] ∈ SN for all Mi from ~M . In case u 6=
v we immediately have (u ~M)[v := N] ∈ SN. Otherwise we need N ~M [v :=
N] ∈ SN. But this follows by multiple applications of IH(b), since every
Mi[v := N] derives a subformula of A with smaller depth. (a’). Similar, and
simpler. (b), (b’). Use (Var) again.

16 1. LOGIC

Case λvM by (λ) from M ∈ SN. (a), (a’). Use (λ) again. (b). Our goal
is (λvM)N ∈ SN. By (β) it suffices to show M [v := N] ∈ SN and N ∈ SN.
The latter holds by assumption, and the former by SIH(a). (b’). Similar,
and simpler.

Case (λwM)K~L by (β) from M [w := K]~L ∈ SN and K ∈ SN. (a). The

SIH(a) yields M [v := N][w := K[v := N]]~L[v := N] ∈ SN and K[v := N] ∈
SN, hence (λwM [v := N])K[v := N]~L[v := N] ∈ SN by (β). (a’). Similar,
and simpler. (b), (b’). Use (β) again. ¤

Corollary. For every term we have M ∈ SN; in particular every term
M is strongly normalizable.

Proof. Induction on the (first) inductive definition of derivation terms
M . In cases u and λvM the claim follows from the definition of SN, and in
case MN it follows from the preceding theorem. ¤

3.5. Confluence. A relation R is said to be confluent , or to have the
Church–Rosser property (CR), if, whenever M0 R M1 and M0 R M2, then
there is an M3 such that M1 R M3 and M2 R M3. A relation R is said to be
weakly confluent , or to have the weak Church–Rosser property (WCR), if,
whenever M0 R M1, M0 R M2 then there is an M3 such that M1 R∗ M3 and
M2 R∗ M3, where R∗ is the reflexive and transitive closure of R.

Clearly for a confluent reduction relation →∗ the normal forms of terms
are unique.

Lemma (Newman 1942). Let →∗ be the transitive and reflexive closure
of →, and let → be weakly confluent. Then the normal form w.r.t. → of
a strongly normalizing M is unique. Moreover, if all terms are strongly
normalizing w.r.t. →, then the relation →∗ is confluent.

Proof. Call M good if it satisfies the confluence property w.r.t. →∗,
i.e. if whenever K ←∗ M →∗ L, then K →∗ N ←∗ L for some N . We
show that every strongly normalizing M is good, by transfinite induction on
the well-founded partial order →+, restricted to all terms occurring in the
reduction tree of M . So let M be given and assume

∀M ′.M →+ M ′ =⇒ M ′ is good.

We must show that M is good, so assume K ←∗ M →∗ L. We may further
assume that there are M ′, M ′′ such that K ←∗ M ′ ← M → M ′′ →∗ L, for
otherwise the claim is trivial. But then the claim follows from the assumed
weak confluence and the induction hypothesis for M ′ and M ′′, as shown in
the picture below. ¤

3.6. Uniqueness of Normal Forms. We first show that → is weakly
confluent. From this and the fact that it is strongly normalizing we can
easily infer (using Newman’s Lemma) that the normal forms are unique.

Proposition. → is weakly confluent.

Proof. Assume N0 ← M → N1. We show that N0 →∗ N ←∗ N1 for
some N , by induction on M . If there are two inner reductions both on the
same subterm, then the claim follows from the induction hypothesis using
substitutivity. If they are on distinct subterms, then the subterms do not

3. NORMALIZATION 17

M
¡

¡¡ª
@

@@R
M ′ weak conf. M ′′

¡
¡¡ª
∗ @

@@R
∗ ¡

¡¡ª
∗ @

@@R
∗

K IH(M ′) ∃N ′ L
@

@@R
∗ ¡

¡¡ª
∗ ¡

¡
¡

¡
¡

¡ª

∗
IH(M ′′)

∃N ′′

@
@@R
∗
∃N

Table 2. Proof of Newman’s lemma

overlap and the claim is obvious. It remains to deal with the case of a head
reduction together with an inner conversion.

(λvM)N~L
¡

¡¡ª
@

@@R
M [v := N]~L

@
@@R

(λvM ′)N~L
¡

¡¡ª
M ′[v := N]~L

(λvM)N~L
¡

¡¡ª
@

@@R
M [v := N]~L

@
@@R
∗

(λvM)N ′~L
¡

¡¡ª
M [v := N ′]~L

(λvM)N~L
¡

¡¡ª
@

@@R
M [v := N]~L

@
@@R

(λvM)N~L′

¡
¡¡ª

M [v := N]~L′

where for the lower left arrows we have used substitutivity again. ¤

Corollary. Every term is strongly normalizing, hence normal forms
are unique. ¤

3.7. The Structure of Normal Derivations. Let M be a normal
derivation, viewed as a prooftree. A sequence of f.o.’s (formula occurrences)
A0, . . . , An such that (1) A0 is a top formula (leaf) of the prooftree, and for
0 ≤ i < n, (2) Ai+1 is immediately below Ai, and (3) Ai is not the minor
premise of an →−-application, is called a track of the deduction tree M . A
track of order 0 ends in the conclusion of M ; a track of order n + 1 ends in
the minor premise of an →−-application with major premise belonging to a
track of order n.

Since by normality an E-rule cannot have the conclusion of an I-rule as
its major premise, the E-rules have to precede the I-rules in a track, so the
following is obvious: a track may be divided into an E-part, say A0, . . . , Ai−1,
a minimal formula Ai, and an I-part Ai+1, . . . , An. In the E-part all rules

18 1. LOGIC

are E-rules; in the I-part all rules are I-rules; Ai is the conclusion of an
E-rule and, if i < n, a premise of an I-rule. It is also easy to see that
each f.o. of M belongs to some track. Tracks are pieces of branches of the
tree with successive f.o.’s in the subformula relationship: either Ai+1 is a
subformula of Ai or vice versa. As a result, all formulas in a track A0, . . . , An

are subformulas of A0 or of An; and from this, by induction on the order
of tracks, we see that every formula in M is a subformula either of an open
assumption or of the conclusion. To summarize, we have seen:

Lemma. In a normal derivation each formula occurrence belongs to some
track.

Proof. By induction on the height of normal derivations. ¤

Theorem. In a normal derivation each formula is a subformula of either
the end formula or else an assumption formula.

Proof. We prove this for tracks of order n, by induction on n. ¤

3.8. Normal Versus Non-Normal Derivations. We now show that
the requirement to give a normal derivation of a derivable formula can some-
times be unrealistic. Following Statman [25] and Orevkov [19] we give exam-
ples of formulas Ck which are easily derivable with non-normal derivations
(whose number of nodes is linear in k), but which require a non-elementary
(in k) number of nodes in any normal derivation.

The example is related to Gentzen’s proof in [9] of transfinite induction
up to ωk in arithmetic. There the function y ⊕ ωx plays a crucial role, and
also the assignment of a “lifting”-formula A+(x) to any formula A(x), by

A+(x) := ∀y.(∀z≺y)A(z) → (∀z ≺ y ⊕ ωx)A(z).

Here we consider the numerical function y + 2x instead, and axiomatize its
graph by means of Horn clauses. The formula Ck expresses that from these
axioms the existence of 2k follows. A short, non-normal proof of this fact
can then be given by a modification of Gentzen’s idea, and it is easily seen
that any normal proof of Ck must contain at least 2k nodes.

The derivations to be given make heavy use of the existential quantifier
∃cl defined by ¬∀¬. In particular we need:

Lemma (Existence Introduction). ` A → ∃clxA.

Proof. λuAλv∀x¬A.vxu. ¤

Lemma (Existence Elimination). ` (¬¬B → B) → ∃clxA → (∀x.A →
B) → B if x /∈ FV (B).

Proof. λu¬¬B→Bλv¬∀x¬Aλw∀x.A→B.uλu¬B
2 .vλxλuA

1 .u2(wxu1). ¤

Note that the stability assumption ¬¬B → B is not needed if B does
not contain an atom 6= ⊥ as a strictly positive subformula. This will be the
case for the derivations below, where B will always be a classical existential
formula.

Let us now fix our language. We use a ternary relation symbol R to
represent the graph of the function y + 2x; so R(y, x, z) is intended to mean
y + 2x = z. We now axiomatize R by means of Horn clauses. For simplicity
we use a unary function symbol s (to be viewed as the successor function)

3. NORMALIZATION 19

and a constant 0; one could use logic without function symbols instead – as
Orevkov does –, but this makes the formulas somewhat less readable and
the proofs less perspicious. Note that Orevkov’s result is an adaption of a
result of Statman [25] for languages containing function symbols.

Hyp1 : ∀yR(y, 0, s(y))

Hyp2 : ∀y, x, z, z1.R(y, x, z) → R(z, x, z1) → R(y, s(x), z1)

The goal formula then is

Ck := ∃clzk, . . . , z0.R(0, 0, zk) ∧ R(0, zk, zk−1) ∧ . . . ∧ R(0, z1, z0).

To obtain the short proof of the goal formula Ck we use formulas Ai(x) with
a free parameter x.

A0(x) := ∀y∃clz R(y, x, z),

Ai+1(x) := ∀y.Ai(y) → ∃clz.Ai(z) ∧ R(y, x, z).

For the two lemmata to follow we give an informal argument, which can
easily be converted into a formal proof. Note that the existence elimination
lemma is used only with existential formulas as conclusions. Hence it is not
necessary to use stability axioms and we have a derivation in minimal logic.

Lemma. ` Hyp1 → Hyp2 → Ai(0).

Proof. Case i = 0. Obvious by Hyp1.
Case i = 1. Let x with A0(x) be given. It is sufficient to show A0(s(x)),

that is ∀y∃clz1R(y, s(x), z1). So let y be given. We know

(4) A0(x) = ∀y∃clz R(y, x, z).

Applying (4) to our y gives z such that R(y, x, z). Applying (4) again to
this z gives z1 such that R(z, x, z1). By Hyp2 we obtain R(y, s(x), z1).

Case i+2. Let x with Ai+1(x) be given. It suffices to show Ai+1(s(x)),
that is ∀y.Ai(y) → ∃clz.Ai(z) ∧ R(y, s(x), z). So let y with Ai(y) be given.
We know

(5) Ai+1(x) = ∀y.Ai(y) → ∃clz1.Ai(z1) ∧ R(y, x, z1).

Applying (5) to our y gives z such that Ai(z) and R(y, x, z). Applying (5)
again to this z gives z1 such that Ai(z1) and R(z, x, z1). By Hyp2 we obtain
R(y, s(x), z1). ¤

Note that the derivations given have a fixed length, independent of i.

Lemma. ` Hyp1 → Hyp2 → Ck.

Proof. Ak(0) applied to 0 and Ak−1(0) yields zk with Ak−1(zk) such
that R(0, 0, zk).

Ak−1(zk) applied to 0 and Ak−2(0) yields zk−1 with Ak−2(zk−1) such
that R(0, zk, zk−1).

A1(z2) applied to 0 and A0(0) yields z1 with A0(z1) such that R(0, z2, z1).
A0(z1) applied to 0 yields z0 with R(0, z1, z0). ¤

Note that the derivations given have length linear in k.
We want to compare the length of this derivation of Ck with the length

of an arbitrary normal derivation.

20 1. LOGIC

Proposition. Any normal derivation of Ck from Hyp1 and Hyp2 has at
least 2k nodes.

Proof. Let a normal derivation M of falsity ⊥ from Hyp1, Hyp2 and
the additional hypothesis

u : ∀zk, . . . , z0.R(0, 0, zk) → R(0, zk, zk−1) → · · · → R(0, z1, z0) → ⊥
be given. We may assume that M does not contain free object variables
(otherwise substitute them by 0). The main branch of M must begin with
u, and its side premises are all of the form R(0, sn(0), sk(0)).

Observe that any normal derivation of R(sm(0), sn(0), sk(0)) from Hyp1,
Hyp2 and u has at least 2n occurrences of Hyp1 and is such that k = m+2n.
This can be seen easily by induction on n. Note also that such a derivation
cannot involve u.

If we apply this observation to the above derivations of the side premises
we see that they derive

R(0, 0, s20

(0)), R(0, s20

(0), s22
0

(0)), . . . R(0, s2k−1(0), s2k(0)).

The last of these derivations uses at least 22k−1 = 2k-times Hyp1. ¤

4. Normalization including Permutative Conversions

The elimination of “detours” done in Section 3 will now be extended to
the full language. However, incorporation of ∨, ∧ and ∃ leads to difficulties.
If we do this by means of axioms (or constant derivation terms, as in 2.3),
we cannot read off as much as we want from a normal derivation. If we
do it in the form of rules, we must also allow permutative conversion. The
reason for the difficulty is that in the elimination rules for ∨,∧,∃ the minor
premise reappears in the conclusion. This gives rise to a situation where we
first introduce a logical connective, then do not touch it (by carrying it along
in minor premises of ∨−,∧−,∃−), and finally eliminate the connective. This
is not a detour as we have treated them in Section 3, and the conversion
introduced there cannot deal with this situation. What has to be done is a
permutative conversion: permute an elimination immediately following an
∨−,∧−,∃−-rule over this rule to the minor premise.

We will show that any sequence of such conversion steps terminates in
a normal form, which in fact is uniquely determined (again by Newman’s
lemma).

Derivations in normal form have many pleasant properties, for instance:

Subformula property: every formula occurring in a normal deriva-
tion is a subformula of either the conclusion or else an assumption;

Explicit definability: a normal derivation of a formula ∃xA from
assumptions not involving disjunctive of existential strictly positive
parts ends with an existence introduction, hence also provides a
term r and a derivation of A[x := r];

Disjunction property: a normal derivation of a disjunction A ∨ B
from assumptions not involving disjunctions as strictly positive
parts ends with a disjunction introduction, hence also provides ei-
ther a derivation of A or else one of B;

4. NORMALIZATION INCLUDING PERMUTATIVE CONVERSIONS 21

4.1. Rules for ∨, ∧ and ∃. Notice that we have not given rules for
the connectives ∨, ∧ and ∃. There are two reasons for this omission:

• They can be covered by means of appropriate axioms as constant
derivation terms, as given in 2.3;

• For simplicity we want our derivation terms to be pure lambda
terms formed just by lambda abstraction and application. This
would be violated by the rules for ∨, ∧ and ∃, which require addi-
tional constructs.

However – as just noted – in order to have a normalization theorem with a
useful subformula property as a consequence we do need to consider rules
for these connectives. So here they are:

Disjunction. The introduction rules are

| M

A ∨+
0

A ∨ B

| M

B ∨+
1

A ∨ B
and the elimination rule is

| M

A ∨ B

[u : A]

| N

C

[v : B]

| K

C ∨−u, v
C

Conjunction. The introduction rule is

| M

A

| N

B ∧+
A ∧ B

and the elimination rule is

| M

A ∧ B

[u : A] [v : B]

| N

C ∧− u, v
C

Existential Quantifier. The introduction rule is

r

| M

A[x := r]
∃+

∃xA
and the elimination rule is

| M

∃xA

[u : A]

| N

B ∃−x, u (var.cond.)
B

The rule ∃−x, u is subject to the following (Eigen-) variable condition: The
derivation N should not contain any open assumptions apart from u : A
whose assumption formula contains x free, and moreover B should not con-
tain the variable x free.

It is easy to see that for each of the connectives ∨, ∧, ∃ the rules and the
axioms are equivalent, in the sense that from the axioms and the premises
of a rule we can derive its conclusion (of course without any ∨,∧,∃-rules),

22 1. LOGIC

and conversely that we can derive the axioms by means of the ∨,∧,∃-rules.
This is left as an exercise.

The left premise in each of the elimination rules ∨−, ∧− and ∃− is called
major premise (or main premise), and each of the right premises minor
premise (or side premise).

4.2. Conversion. In addition to the →,∀-conversions treated in 3.1,
we consider the following conversions:

∨-conversion.

| M

A ∨+
0

A ∨ B

[u : A]

| N

C

[v : B]

| K

C ∨−u, v
C

7→
| M

A
| N

C

and

| M

B ∨+
1

A ∨ B

[u : A]

| N

C

[v : B]

| K

C ∨−u, v
C

7→
| M

B
| K

C

∧-conversion.

| M

A

| N

B ∧+
A ∧ B

[u : A] [v : B]

| K

C ∧− u, v
C

7→
| M

A

| N

B
| K

C

∃-conversion.

r

| M

A[x := r]
∃+

∃xA

[u : A]

| N

B ∃−x, u
B

7→

| M

A[x := r]

| N ′

B

4.3. Permutative Conversion. In a permutative conversion we per-
mute an E-rule upwards over the minor premises of ∨−, ∧− or ∃−.

∨-perm conversion.

| M

A ∨ B

| N

C

| K

C
C

| L

C ′
E-rule

D

7→

| M

A ∨ B

| N

C

| L

C ′
E-rule

D

| K

C

| L

C ′
E-rule

D
D

4. NORMALIZATION INCLUDING PERMUTATIVE CONVERSIONS 23

∧-perm conversion.

| M

A ∧ B

| N

C
C

| K

C ′
E-rule

D

7→

| M

A ∧ B

| N

C

| K

C ′
E-rule

D
D

∃-perm conversion.

| M

∃xA

| N

B
B

| K

C
E-rule

D

7→

| M

∃xA

| N

B

| K

C
E-rule

D
D

4.4. Derivations as Terms. The term representation of derivations
has to be extended. The rules for ∨, ∧ and ∃ with the corresponding terms
are given in the table below.

The introduction rule ∃+ has as its left premise the witnessing term r to
be substituted. The elimination rule ∃−u is subject to an (Eigen-) variable
condition: The derivation term N should not contain any open assumptions
apart from u : A whose assumption formula contains x free, and moreover
B should not contain the variable x free.

4.5. Permutative Conversions. In this section we shall write deriva-
tion terms without formula superscripts. We usually leave implicit the extra
(formula) parts of derivation constants and for instance write ∃+, ∃− instead
of ∃+

x,A, ∃−x,A,B. So we consider derivation terms M, N, K of the forms

u | λvM | λyM | ∨+
0 M | ∨+

1 M | 〈M, N〉 | ∃+rM |
MN | Mr | M(v0.N0, v1.N1) | M(v, w.N) | M(v.N);

in these expressions the variables y, v, v0, v1, w get bound.
To simplify the technicalities, we restrict our treatment to the rules for

→ and ∃. It can easily be extended to the full set of rules; some details for
disjunction are given in 4.6. So we consider

u | λvM | ∃+rM | MN | M(v.N);

in these expressions the variable v gets bound.
We reserve the letters E, F, G for eliminations, i.e. expressions of the

form (v.N), and R, S, T for both terms and eliminations. Using this notation
we obtain a second (and clearly equivalent) inductive definition of terms:

u ~M | u ~ME | λvM | ∃+rM |
(λvM)N ~R | ∃+rM(v.N)~R | u ~MER~S.

24 1. LOGIC

derivation term

| M

A ∨+
0

A ∨ B

| M

B ∨+
1

A ∨ B

(
∨+

0,BMA
)A∨B (

∨+
1,AMB

)A∨B

| M

A ∨ B

[u : A]

| N

C

[v : B]

| K

C ∨−u, v
C

(
MA∨B(uA.NC , vB.KC)

)C

| M

A

| N

B ∧+
A ∧ B

〈MA, NB〉A∧B

| M

A ∧ B

[u : A] [v : B]

| N

C ∧− u, v
C

(
MA∧B(uA, vB.NC)

)C

r

| M

A[x := r]
∃+

∃xA

(
∃+

x,ArMA[x:=r]
)∃xA

| M

∃xA

[u : A]

| N

B ∃−x, u (var.cond.)
B

(
M∃xA(uA.NB)

)B
(var.cond.)

Table 3. Derivation terms for ∨, ∧ and ∃

Here the final three forms are not normal: (λvM)N ~R and ∃+rM(v.N)~R

both are β-redexes, and u ~MER~S is a permutative redex . The conversion
rules are

(λvM)N 7→β M [v := N] β→-conversion,

∃+
x,ArM(v.N) 7→β N [x := r][v := M] β∃-conversion,

M(v.N)R 7→π M(v.NR) permutative conversion.

The closure of these conversions is defined by

4. NORMALIZATION INCLUDING PERMUTATIVE CONVERSIONS 25

• If M 7→β M ′ or M 7→π M ′, then M → M ′.
• If M → M ′, then also MR → M ′R, NM → NM ′, N(v.M) →

N(v.M ′), λvM → λvM ′, ∃+rM → ∃+rM ′ (inner reductions).

We now give the rules to inductively generate a set SN:

~M ∈ SN (Var0)
u ~M ∈ SN

M ∈ SN (λ)
λvM ∈ SN

M ∈ SN (∃)
∃+rM ∈ SN

~M, N ∈ SN
(Var)

u ~M(v.N) ∈ SN

u ~M(v.NR)~S ∈ SN
(Varπ)

u ~M(v.N)R~S ∈ SN

M [v := N]~R ∈ SN N ∈ SN
(β→)

(λvM)N ~R ∈ SN

N [x := r][v := M]~R ∈ SN M ∈ SN
(β∃)

∃+
x,ArM(v.N)~R ∈ SN

where in (Varπ) we require that v is not free in R.
Write M↓ to mean that M is strongly normalizable, i.e., that every

reduction sequence starting from M terminates. By analyzing the possible
reduction steps we now show that the set Wf := {M | M↓ } has the closure
properties of the definition of SN above, and hence SN ⊆ Wf.

Lemma. Every term in SN is strongly normalizable.

Proof. We distinguish cases according to the generation rule of SN

applied last. The following rules deserve special attention.
Case (Varπ). We prove, as an auxiliary lemma, that

u ~M(v.NR)~S↓ implies u ~M(v.N)R~S↓,
by induction on u ~M(v.NR)~S↓ (i.e., on the reduction tree of this term). We

consider the possible reducts of u ~M(v.N)R~S. The only interesting case is

R~S = (v′.N ′)T ~T and we have a permutative conversion of R = (v′.N ′) with

T , leading to the term M = u ~M(v.N)(v′.N ′T)~T . Now M↓ follows, since

u ~M(v.NR)~S = u ~M(v.N(v′.N ′))T ~T

leads in two permutative steps to u ~M(v.N(v′.N ′T))~T , hence for this term
we have the induction hypothesis available.

Case (β→). We show that M [v := N]~R↓ and N↓ imply (λvM)N ~R↓.
This is done by a induction on N↓, with a side induction on M [v := N]~R↓.
We need to consider all possible reducts of (λvM)N ~R. In case of an outer β-
reduction use the assumption. If N is reduced, use the induction hypothesis.

Reductions in M and in ~R as well as permutative reductions within ~R are
taken care of by the side induction hypothesis.

Case (β∃). We show that N [x := r][v := M]~R↓ and M↓ together imply

∃+rM(v.N)~R↓. This is done by a threefold induction: first on M↓, second

on N [x := r][v := M]~R↓ and third on the length of ~R. We need to consider

all possible reducts of ∃+rM(v.N)~R. In case of an outer β-reduction use the

26 1. LOGIC

assumption. If M is reduced, use the first induction hypothesis. Reductions

in N and in ~R as well as permutative reductions within ~R are taken care
of by the second induction hypothesis. The only remaining case is when
~R = S~S and (v.N) is permuted with S, to yield ∃+rM(v.NS)~S. Apply the

third induction hypothesis, since (NS)[x := r][v := M]~S = N [x := r][v :=

M]S~S. ¤

For later use we prove a slightly generalized form of the rule (Varπ):

Proposition. If M(v.NR)~S ∈ SN, then M(v.N)R~S ∈ SN.

Proof. Induction on the generation of M(v.NR)~S ∈ SN. We distin-
guish cases according to the form of M .

Case u~T (v.NR)~S ∈ SN. If ~T = ~M , use (Varπ). Otherwise we have

u ~M(v′.N ′)~R(v.NR)~S ∈ SN. This must be generated by repeated applica-

tions of (Varπ) from u ~M(v′.N ′ ~R(v.NR)~S) ∈ SN, and finally by (Var) from
~M ∈ SN and N ′ ~R(v.NR)~S ∈ SN. The induction hypothesis for the latter

yields N ′ ~R(v.N)R~S ∈ SN, hence u ~M(v.N ′ ~R(v.N)R~S) ∈ SN by (Var) and

finally u ~M(v.N ′)~R(v.N)R~S ∈ SN by (Varπ).

Case ∃+rM ~T (v.NR)~S ∈ SN. Similarly, with (β∃) instead of (Varπ). In

detail: If ~T is empty, by (β∃) this came from (NR)[x := r][v := M]~S =

N [x := r][v := M]R~S ∈ SN and M ∈ SN, hence ∃+rM(v.N)R~S ∈ SN

again by (β∃). Otherwise we have ∃+rM(v′.N ′)~T (v.NR)~S ∈ SN. This

must be generated by (β∃) from N ′[x := r][v′ := M]~T (v.NR)~S ∈ SN. The

induction hypothesis yields N ′[x := r][v′ := M]~T (v.N)R~S ∈ SN, hence

∃+rM(v′.N ′)~T (v.N)R~S ∈ SN by (β∃).
Case (λvM)N ′ ~R(w.NR)~S ∈ SN. By (β→) this came from N ′ ∈ SN

and M [v := N ′]~R(w.NR)~S ∈ SN. The induction hypothesis yields M [v :=

N ′]~R(w.N)R~S ∈ SN, hence (λvM)N ′ ~R(w.N)R~S ∈ SN by (β→). ¤

In what follows we shall show that every term is in SN and hence is
strongly normalizable. Given the definition of SN we only have to show
that SN is closed under →− and ∃−. In order to prove this we must prove
simultaneously the closure of SN under substitution.

Theorem (Properties of SN). For all formulas A,

(a) for all M ∈ SN, if M proves A = A0 → A1 and N ∈ SN, then MN ∈ SN,
(b) for all M ∈ SN, if M proves A = ∃xB and N ∈ SN, then M(v.N) ∈ SN,
(c) for all M ∈ SN, if NA ∈ SN, then M [v := N] ∈ SN.

Proof. Induction on dp(A). We prove (a) and (b) before (c), and hence
have (a) and (b) available for the proof of (c). More formally, by induction
on A we simultaneously prove that (a) holds, that (b) holds and that (a),
(b) together imply (c).

(a). By induction on M ∈ SN. Let M ∈ SN and assume that M proves
A = A0 → A1 and N ∈ SN. We distinguish cases according to how M ∈ SN

was generated. For (Var0), (Varπ), (β→) and (β∃) use the same rule again.

Case u ~M(v.N ′) ∈ SN by (Var) from ~M, N ′ ∈ SN. Then N ′N ∈ SN by

side induction hypothesis for N ′, hence u ~M(v.N ′N) ∈ SN by (Var), hence

u ~M(v.N ′)N ∈ SN by (Varπ).

4. NORMALIZATION INCLUDING PERMUTATIVE CONVERSIONS 27

Case (λvM)A0→A1 ∈ SN by (λ) from M ∈ SN. Use (β→); for this we
need to know M [v := N] ∈ SN. But this follows from IH(c) for M , since N
derives A0.

(b). By induction on M ∈ SN. Let M ∈ SN and assume that M proves
A = ∃xB and N ∈ SN. The goal is M(v.N) ∈ SN. We distinguish cases
according to how M ∈ SN was generated. For (Varπ), (β→) and (β∃) use
the same rule again.

Case u ~M ∈ SN by (Var0) from ~M ∈ SN. Use (Var).
Case (∃+rM)∃xA ∈ SN by (∃) from M ∈ SN. Use (β∃); for this we need

to know N [x := r][v := M] ∈ SN. But this follows from IH(c) for N [x := r],
since M derives A[x := r].

Case u ~M(v′.N ′) ∈ SN by (Var) from ~M, N ′ ∈ SN. Then N ′(v.N) ∈ SN

by side induction hypothesis for N ′, hence u ~M(v.N ′(v.N)) ∈ SN by (Var)

and therefore u ~M(v.N ′)(v.N) ∈ SN by (Varπ).
(c). By induction on M ∈ SN. Let NA ∈ SN; the goal is M [v := N] ∈

SN. We distinguish cases according to how M ∈ SN was generated. For (λ),
(∃), (β→) and (β∃) use the same rule again.

Case u ~M ∈ SN by (Var0) from ~M ∈ SN. Then ~M [v := N] ∈ SN by

SIH(c). If u 6= v, use (Var0) again. If u = v, we must show N ~M [v :=
N] ∈ SN. Note that N proves A; hence the claim follows from (a) and the
induction hypothesis.

Case u ~M(v′.N ′) ∈ SN by (Var) from ~M, N ′ ∈ SN. If u 6= v, use (Var)

again. If u = v, we must show N ~M [v := N](v′.N ′[v := N]) ∈ SN. Note

that N proves A; hence in case ~M empty the claim follows from (b), and
otherwise from (a) and the induction hypothesis.

Case u ~M(v′.N ′)R~S ∈ SN by (Varπ) from u ~M(v′.N ′R)~S ∈ SN. If u 6= v,
use (Varπ) again. If u = v, from the induction hypothesis we obtain

N ~M [v := N](v′.N ′[v := N]R[v := N]).~S[v := N] ∈ SN

Now use the proposition above. ¤

Corollary. Every term is strongly normalizable.

Proof. Induction on the (first) inductive definition of terms M . In
cases u and λvM the claim follows from the definition of SN, and in cases
MN and M(v.N) it follows from parts (a), (b) of the previous theorem. ¤

4.6. Disjunction. We describe the changes necessary to extend the
result above to the language with disjunction ∨.

We have additional β-conversions

∨+
i M(v0.N0, v1.N1) 7→β M [vi := Ni] β∨i

-conversion.

The definition of SN needs to be extended by

M ∈ SN (∨i)
∨+

i M ∈ SN

~M, N0, N1 ∈ SN
(Var∨)

u ~M(v0.N0, v1.N1) ∈ SN

u ~M(v0.N0R, v1.N1R)~S ∈ SN
(Var∨,π)

u ~M(v0.N0, v1.N1)R~S ∈ SN

28 1. LOGIC

Ni[vi := M]~R ∈ SN N1−i
~R ∈ SN M ∈ SN

(β∨i
)

∨+
i M(v0.N0, v1.N1)~R ∈ SN

The former rules (Var), (Varπ) should then be renamed into (Var∃), (Var∃,π).
The lemma above stating that every term in SN is strongly normalizable

needs to be extended by an additional clause:

Case (β∨i
). We show that Ni[vi := M]~R↓, N1−i

~R↓ and M↓ together im-

ply ∨+
i M(v0.N0, v1.N1)~R↓. This is done by a fourfold induction: first on M↓,

second on Ni[vi := M]~R↓, N1−i
~R↓, third on N1−i

~R↓ and fourth on the length

of ~R. We need to consider all possible reducts of ∨+
i M(v0.N0, v1.N1)~R. In

case of an outer β-reduction use the assumption. If M is reduced, use the

first induction hypothesis. Reductions in Ni and in ~R as well as permutative

reductions within ~R are taken care of by the second induction hypothesis.
Reductions in N1−i are taken care of by the third induction hypothesis. The

only remaining case is when ~R = S~S and (v0.N0, v1.N1) is permuted with
S, to yield (v0.N0S, v1.N1S). Apply the fourth induction hypothesis, since

(NiS)[v := M]~S = Ni[v := M]S~S.
Finally the theorem above stating properties of SN needs an additional

clause:

• for all M ∈ SN, if M proves A = A0 ∨ A1 and N0, N1 ∈ SN, then
M(v0.N0, v1.N1) ∈ SN.

Proof. The new clause is proved by induction on M ∈ SN. Let M ∈ SN

and assume that M proves A = A0 ∨ A1 and N0, N1 ∈ SN. The goal is
M(v0.N0, v1.N1) ∈ SN. We distinguish cases according to how M ∈ SN was
generated. For (Var∃,π), (Var∨,π), (β→), (β∃) and (β∨i

) use the same rule
again.

Case u ~M ∈ SN by (Var0) from ~M ∈ SN. Use (Var∨).
Case (∨+

i M)A0∨A1 ∈ SN by (∨i) from M ∈ SN. Use (β∨i
); for this we

need to know Ni[vi := M] ∈ SN and N1−i ∈ SN. The latter is assumed,
and the former follows from main induction hypothesis (with Ni) for the
substitution clause of the theorem, since M derives Ai.

Case u ~M(v′.N ′) ∈ SN by (Var∃) from ~M, N ′ ∈ SN. For brevity let
E := (v0.N0, v1.N1). Then N ′E ∈ SN by side induction hypothesis for N ′,
so u ~M(v′.N ′E) ∈ SN by (Var∃) and therefore u ~M(v′.N ′)E ∈ SN by (Var∃,π).

Case u ~M(v′0.N
′
0, v

′
1.N

′
1) ∈ SN by (Var∨) from ~M, N ′

0, N
′
1 ∈ SN. Let

E := (v0.N0, v1.N1). Then N ′
iE ∈ SN by side induction hypothesis for N ′

i ,

so u ~M(v′0.N
′
0E, v′1.N

′
1E) ∈ SN by (Var∨) and therefore u ~M(v′0.N

′
0, v

′
1.N

′
1)E ∈

SN by (Var∨,π).
Clause (c) now needs additional cases, e.g.,

Case u ~M(v0.N0, v1.N1) ∈ SN by (Var∨) from ~M, N0, N1 ∈ SN. If u 6= v,

use (Var∨). If u = v, we show N ~M [v := N](v0.N0[v := N], v1.N1[v := N]) ∈
SN. Note that N proves A; hence in case ~M empty the claim follows from
(b), and otherwise from (a) and the induction hypothesis. ¤

4.7. The Structure of Normal Derivations. As mentioned already,
normalizations aim at removing local maxima of complexity, i.e. formula oc-
currences which are first introduced and immediately afterwards eliminated.

4. NORMALIZATION INCLUDING PERMUTATIVE CONVERSIONS 29

However, an introduced formula may be used as a minor premise of an ap-
plication of ∨−, ∧− or ∃−, then stay the same throughout a sequence of
applications of these rules, being eliminated at the end. This also consti-
tutes a local maximum, which we should like to eliminate; for that we need
the so-called permutative conversions. First we give a precise definition.

Definition. A segment of (length n) in a derivation M is a sequence
A1, . . . , An of occurrences of a formula A such that

(a) for 1 < i < n, Ai is a minor premise of an application of ∨−, ∧− or ∃−,
with conclusion Ai+1;

(b) An is not a minor premise of ∨−, ∧− or ∃−.
(c) A1 is not the conclusion of ∨−, ∧− or ∃−.

(Note: An f.o. which is neither a minor premise nor the conclusion of an
application of ∨−, ∧− or ∃− always belongs to a segment of length 1.) A
segment is maximal or a cut (segment) if An is the major premise of an
E-rule, and either n > 1, or n = 1 and A1 = An is the conclusion of an
I-rule.

We shall use σ, σ′ for segments. We shall say that σ is a subformula of
σ′ if the formula A in σ is a subformula of B in σ′. Clearly a derivation is
normal iff it does not contain a maximal segment.

The argument in 3.7 needs to be refined to also cover the rules for ∨,∧,∃.
The reason for the difficulty is that in the E-rules ∨−,∧−,∃− the subformulas
of a major premise A ∨ B, A ∧ B or ∃xA of an E-rule application do not
appear in the conclusion, but among the assumptions being discharged by
the application. This suggests the definition of track below.

The general notion of a track is designed to retain the subformula prop-
erty in case one passes through the major premise of an application of a
∨−,∧−,∃−-rule. In a track, when arriving at an Ai which is the major
premise of an application of such a rule, we take for Ai+1 a hypothesis
discharged by this rule.

Definition. A track of a derivation M is a sequence of f.o.’s A0, . . . , An

such that

(a) A0 is a top f.o. in M not discharged by an application of an ∨−,∧−,∃−-
rule;

(b) Ai for i < n is not the minor premise of an instance of →−, and either
(i) Ai is not the major premise of an instance of a ∨−,∧−,∃−-rule and

Ai+1 is directly below Ai, or
(ii) Ai is the major premise of an instance of a ∨−,∧−,∃−-rule and

Ai+1 is an assumption discharged by this instance;
(c) An is either

(i) the minor premise of an instance of →−, or
(ii) the conclusion of M , or
(iii) the major premise of an instance of a ∨−,∧−,∃−-rule in case there

are no assumptions discharged by this instance.

Proposition. Let M be a normal derivation, and let π = σ0, . . . , σn be
a track in M . Then there is a segment σi in π, the minimum segment or
minimum part of the track, which separates two (possibly empty) parts of π,

30 1. LOGIC

called the E-part (elimination part) and the I-part (introduction part) of π
such that

(a) for each σj in the E-part one has j < i, σj is a major premise of an
E-rule, and σj+1 is a strictly positive part of σj, and therefore each σj

is a s.p.p. of σ0;
(b) for each σj which is the minimum segment or is in the I-part one has

i ≤ j, and if j 6= n, then σj is a premise of an I-rule and a s.p.p. of
σj+1, so each σj is a s.p.p. of σn.

Definition. A track of order 0, or main track , in a normal derivation
is a track ending either in the conclusion of the whole derivation or in the
major premise of an application of a ∨−, ∧− or ∃−-rule, provided there are
no assumption variables discharged by the application. A track of order
n + 1 is a track ending in the minor premise of an →−-application, with
major premise belonging to a track of order n.

A main branch of a derivation is a branch π in the prooftree such that π
passes only through premises of I-rules and major premises of E-rules, and
π begins at a top node and ends in the conclusion.

Remark. By an obvious simplification conversion we may remove every
application of an ∨−, ∧− or ∃−-rule that discharges no assumption variables.
If such simplification conversion are performed, each track of order 0 in a
normal derivation is a track ending in the conclusion of the whole derivation.

If we search for a main branch going upwards from the conclusion, the
branch to be followed is unique as long as we do not encounter an ∧+-
application.

Lemma. In a normal derivation each formula occurrence belongs to some
track.

Proof. By induction on the height of normal derivations. For example,
suppose a derivation K ends with an ∃−-application:

| M

∃xA

[u : A]

| N

B ∃−x, u
B

B in N belongs to a track π (induction hypothesis); either this does not
start in u : A, and then π, B is a track in K which ends in the conclusion; or
π starts in u : A, and then there is a track π′ in M (induction hypothesis)
such that π′, π, C is a track in K ending in the conclusion. The other cases
are left to the reader. ¤

Theorem (Subformula property). Let M be a normal derivation where
every application of an ∨−, ∧− or ∃−-rule discharges at least one assumption
variable. Then each formula occurring in the derivation is a subformula of
either the end formula or else an assumption formula.

Proof. As note above, each track of order 0 in M is a track ending in
the conclusion of M . We can now prove the theorem for tracks of order n,
by induction on n. ¤

5. NOTES 31

Theorem (Disjunction property). If Γ does not contain a disjunction
as s.p.p. (= strictly positive part, defined in 1.3), then, if Γ ` A ∨ B, it
follows that Γ ` A or Γ ` B.

Proof. Consider a normal derivation M of A ∨ B from assumptions Γ
not containing a disjunction as s.p.p. The conclusion A ∨B is the final for-
mula of a (main) track, whose top formula A0 in M must be an assumption
in Γ. Since Γ does not contain a disjunction as s.p.p., the segment σ with
the conclusion A∨B is in the I-part. Skip the final ∨+

i -rule and replace the
formulas in σ by A if i = 0, and by B if i = 1. ¤

There is a similar theorem for the existential quantifier:

Theorem (Explicit definability under hypotheses). Let Γ ` ∃xA.

(a) If Γ does not contain an existential s.p.p., then there are terms r1, r2,
. . . , rn such that Γ ` A[x := r1] ∨ . . . ∨ A[x := rn].

(b) If Γ neither contains a disjunctive s.p.p., nor an existential s.p.p., then
there is a term r such that Γ ` A[x := r].

Proof. Consider a normal derivation M of ∃xA from assumptions Γ
not containing an existential s.p.p. We use induction on the derivation, and
distinguish cases on the last rule.

(a). By assumption the last rule cannot be ∃−. We only consider the
case ∨− and leave the others to the reader.

| M

B ∨ C

[u : B]

| N0

∃xA

[v : C]

| N1

∃xA ∨−u, v
∃xA

By assumption again neither B nor C can have an existential s.p.p. Applying
the induction hypothesis to N0 and N1 we obtain

| M

B ∨ C

[u : B]

| N0
∨∨n

i=1 A[x := ri]
∨+

∨∨n+m
i=1 A[x := ri]

[v : C]

| N1
∨∨n+m

i=n+1 A[x := ri]
∨+

∨∨n+m
i=1 A[x := ri] ∨−u, v∨∨n+m

i=1 A[x := ri]

(b). Similarly; by assumption the last rule can be neither ∨− nor ∃−. ¤

Remark. Rasiowa-Harrop formulas (in the literature also called Harrop
formulas) are formulas for which no s.p.p. is a disjunction or an existential
formula. For Γ consisting of Rasiowa-Harrop formulas both theorems above
hold.

5. Notes

The proof of the existence of normal forms w.r.t permutative conversions
is originally due to Prawitz [20]. We have adapted a method developed by
Joachimski and Matthes [13], which in turn is based on van Raamsdonk’s
and Severi’s [28].

CHAPTER 2

Models

It is an obvious question to ask whether the logical rules we have been
considering suffice, i.e. whether we have forgotten some necessary rules. To
answer this question we first have to fix the meaning of a formula, i.e. we
have to provide a semantics.

This is rather straightforward for classical logic: we can take the usual
notion of a structure (or model, or (universal) algebra). However, for min-
imal and intuitionistic logic we need a more refined notion: we shall use
so-called Beth-structures here. Using this concept of a model we will prove
soundness and completeness for both, minimal and intuitionistic logic. As a
corollary we will obtain completeness of classical logic, w.r.t. the standard
notion of a structure.

1. Structures for Classical Logic

1.1. Structures. We define the notion of a structure (more accurately
L-structure) and define what the value of a term and the meaning of a
formula in such a structure should be.

Definition. M = (D, I) is a pre-structure (or L-pre-structure), if D
a non-empty set (the carrier set or the domain of M) and I is a map
(interpretation) assigning to every n-ary function symbol f of L a function

I(f) : Dn → D.

In case n = 0, I(f) is an element of D. M = (D, I0, I1) is a structure (or
L-structure), if (D, I0) is a pre-structure and I1 a map assigning to every
n-ary relation symbol R of L an n-ary relation

I1(R) ⊆ Dn.

In case n = 0, I1(R) is one of the truth values 1 and 0; in particular we
require I1(⊥) = 0.

If M = (D, I) or (D, I0, I1), then we often write |M| for the carrier set
D of M and fM, RM for the interpretations I0(f), I1(R) of the function
and relation symbols.

An assignment (or variable assignment) in D is a map η assigning to
every variable x ∈ dom(η) a value η(x) ∈ D. Finite assignments will be
written as [x1 := a1, . . . , xn := an] (or else as [a1/x1, . . . , an/xn]), with
distinct x1, . . . , xn. If η is an assignment in D and a ∈ D, let ηa

x be the
assignment in D mapping x to a and coinciding with η elsewhere, so

ηa
x(y) :=

{

η(y), if y 6= x

a, if y = x.

33

34 2. MODELS

Let a pre-structure M and an assignment η in |M| be given. We define
a homomorphic extension of η (denoted by η as well) to the set Set TerL of
L-terms t such that vars(t) ⊆ dom(η) by

η(c) := cM,

η(f(t1, . . . , tn)) := fM(η(t1), . . . , η(tn)).

Observe that the extension of η depends on M; therefore we may also write
tM[η] for η(t).

For every structure M, assignment η in |M| and formula A with FV(A) ⊆
dom(η) we define M |= A[η] (read: A is valid in M under the assignment
η) by recursion on A.

M |= R(t1, . . . , tn)[η] :⇐⇒ (tM1 [η], . . . , tMn [η]) ∈ I1(R) for R not 0-ary.

M |= R[η] :⇐⇒ I1(R) = 1 for R 0-ary.

M |= (A ∧ B)[η] :⇐⇒ M |= A[η] and M |= B[η].

M |= (A ∨ B)[η] :⇐⇒ M |= A[η] or M |= B[η].

M |= (A → B)[η] :⇐⇒ if M |= A[η], then M |= B[η].

M |= (∀xA)[η] :⇐⇒ for all a ∈ |M| we have M |= A[ηa
x].

M |= (∃xA)[η] :⇐⇒ there is an a ∈ |M| such that M |= A[ηa
x].

Because of I1(⊥) = 0 we have in particular M 6|= ⊥[η].
If Γ is a set of formulas, we write M |= Γ[η], if for all A ∈ Γ we have

M |= A[η]. If M |= A[η] for all assignments η in |M|, we write M |= A.

1.2. Coincidence and Substitution Lemma.

Lemma (Coincidence). Let M be a structure, t a term, A a formula and
η, ξ assignments in |M|.
(a) If η(x) = ξ(x) for all x ∈ vars(t), then η(t) = ξ(t).
(b) If η(x) = ξ(x) for all x ∈ FV(A), then M |= A[η] iff M |= A[ξ].

Proof. Induction on terms and formulas. ¤

Lemma (Substitution). Let M be an L-structure, t, r L-terms, A an
L-formula and η an assignment in |M|. Then

(a) η(r[x := t]) = η
η(t)
x (r).

(b) M |= A[x := t][η] ⇐⇒ M |= A[η
η(t)
x].

Proof. (a). Induction on r. (b). Induction on A. We restrict ourselves
to the cases of an atomic formula and a universal formula; the other cases
are easier.

Case R(s1, . . . , sn). For simplicity assume n = 1. Then

M |= R(s)[x := t][η] ⇐⇒ M |= R(s[x := t])[η]

⇐⇒ η(s[x := t]) ∈ RM

⇐⇒ ηη(t)
x (s) ∈ RM by (a)

⇐⇒ M |= R(s)[ηη(t)
x].

2. BETH-STRUCTURES FOR MINIMAL LOGIC 35

Case ∀yA. We may assume y 6= x and y /∈ vars(t).

M |= (∀yA)[x := t][η]

⇐⇒ M |= (∀yA[x := t])[η]

⇐⇒ for all a ∈ |M|, M |= A[x := t][ηa
y]

⇐⇒ for all a ∈ |M|, M |= A[(ηa
y)b

x] with b := ηa
y(t) = η(t)

(by IH and the coincidence lemma)

⇐⇒ for all a ∈ |M|, M |= A[(ηb
x)a

y], (because x 6= y)

⇐⇒ M |= (∀yA)[ηb
x]

This completes the proof. ¤

1.3. Soundness. We prove the soundness theorem: it says that every
formula derivable in classical logic is valid in an arbitrary structure.

Theorem (Soundness). Let Γ `c B. If M is a structure and η an
assignment in |M|, then M |= Γ[η] entails M |= B[η].

Proof. Induction on derivations. The given derivation of B from Γ
can only have finitely many free assumptions; hence we may assume Γ =
{A1, . . . , An}.

Case u : B. Then B ∈ Γ and the claim is obvious.
Case StabR : ∀~x.¬¬R~x → R~x. Again the claim is clear, since M |=

¬¬A[η] means the same as M |= A[η].
Case →−. Assume M |= Γ[η]. We must show M |= B[η]. By IH,

M |= (A → B)[η] and M |= A[η]. The claim follows from the definition of
|=.

Case →+. Assume M |= Γ[η]. We must show M |= (A → B)[η]. So
assume in addition M |= A[η]. We must show M |= B[η]. By IH (with
Γ ∪ {A} instead of Γ) this clearly holds.

Case ∀+. Assume M |= Γ[η]. We must show M |= A[ηa
x]. We may

assume that all assumptions A1, . . . , An actually in the given derivation.
Since because of the variable condition for ∀+ the variable x does not appear
free in any of the formulas A1, . . . , An, we have by the coincidence lemma
M |= Γ[ηa

x]. The IH (with ηa
x instead of η) yields M |= A[ηa

x].
Case ∀−. Assume M |= Γ[η]. We must show M |= A[x := t][η], i.e. by

the substitution lemma M |= A[ηb
x] with b := η(t). By IH, M |= (∀xA)[η],

i.e. M |= A[ηa
x] for all a ∈ |M|. With η(t) for a the claim follows.

The other cases are proved similarly. ¤

2. Beth-Structures for Minimal Logic

2.1. Beth-Structures. Consider a partially ordered set of “possible
worlds”. The worlds are represented as nodes in a finitely branching tree.
They may be thought of as possible states such that all nodes “above” a
node k are the ways in which k may develop in the future. The worlds are
increasing, that is, if an atomic formula R~t true is in a world k, then R~t is
true in all worlds “above” k.

More formally, each Beth-structure is based on a finitely branching tree
T . A node k over a set S is a finite sequence k = 〈a0, a1, . . . , an−1〉 of

36 2. MODELS

elements of S; lh(k) is the length of k. We write k ¹ k′ if k is the initial
segment of k′. A tree on S is a set of nodes closed under initial segments. A
tree T is finitely branching if every node in T has finitely many immediate
successors.

A tree T is unbounded if for every n ∈ N there is a node k ∈ T such that
lh(k) = n. A branch of T is a linearly ordered subtree of T . A leaf is a node
without successors in T .

For the proof of the completeness theorem, a Beth-structure based on
a complete binary tree (i.e. the complete tree over {0, 1}) will suffice. The
nodes will be all the finite sequences of 0’s and 1’s, and the ordering is as
above. The root is the empty sequence and k0 is the sequence k with the
postfix 0. Similarly for k1.

Definition. Let (T,¹) be a finitely branching tree. B = (D, I0, I1) is
a L-Beth-structure on T , where D is a nonempty set, and for each n-ary
function symbol in L, I0 assigns f a map I0(f) : Dn → D. For each n-ary
relation symbol R in L and each node k ∈ T , I1(R, k) ⊆ Dn is assigned in
such a way that monotonicity is preserved, that is,

k ¹ k′ ⇒ I1(R, k) ⊆ I1(R, k′).

If n = 0, then I1(R, k) is either true or false, and it follows by the mono-
tonicity that if k ¹ k′ and I1(R, k) then I1(R, k′).

There is no special requirement set on I1(⊥, k). In minimal logic, falsum
⊥ plays a role of an ordinary propositional variable.

For an assignment η, tB[η] is understood classically. The classical sa-
tisfaction relation M |= A[η] is replaced with the forcing relation in Beth-
structures. It is obvious from the definition that any T can be extended
to a complete tree T̄ without leaves, in which for each leaf k ∈ T all se-
quences k0, k00, k000, . . . are added to T . For each node k0 . . . 0, we add
I1(R, k0 . . . 0) := I1(R, k).

Definition. B, k ° A[η] (B forces A at a node k for an assignment η)
is defined inductively as follows. We write k ° A[η] when it is clear from
the context what the underlying structure B is, and we write ∀k′ºnk A for
∀k′ºk.lh(k′) = lh(k) + n → A.

k ° R(t1, . . . , tp)[η] :⇐⇒ ∃n∀k′ºnk (tB1 [η], . . . , tBp [η]) ∈ I1(R, k′),

if R is not 0-ary.

k ° R[η] :⇐⇒ ∃n∀k′ºnk I1(R, k′) = 1 if R is 0-ary.

k ° (A ∨ B)[η] :⇐⇒ ∃n∀k′ºnk.k′ ° A[η] or k′ ° B[η].

k ° (∃xA)[η] :⇐⇒ ∃n∀k′ºnk∃a∈|B| k′ ° A[ηa
x].

k ° (A → B)[η] :⇐⇒ ∀k′ºk.k′ ° A[η] ⇒ k′ ° B[η].

k ° (A ∧ B)[η] :⇐⇒ k ° A[η] and k ° B[η].

k ° (∀xA)[η] :⇐⇒ ∀a∈|B| k ° A[ηa
x].

The clauses for atoms, disjunction and existential quantifier include a
concept of a “bar”, in T̄ .

2. BETH-STRUCTURES FOR MINIMAL LOGIC 37

2.2. Covering Lemma. It is easily seen (from the definition and using
monotonicity) that from k ° A[η] and k ¹ k′ we can conclude k′ ° A[η].
The converse is also true:

Lemma (Covering Lemma).

∀k′ºnk k′ ° A[η] ⇒ k ° A[η].

Proof. Induction on A. We write k ° A for k ° A[η].
Case R~t. Assume

∃n∀k′ºnk k′ ° R~t,

hence by definition

∃n∀k′ºnk∃m∀k′′ºmk′~tB[η] ∈ I1(R, k′′).

Since T is a finitely branching tree,

∃m∀k′ºmk~tB[η] ∈ I1(R, k′).

Hence k ° R~t.
The cases A ∨ B and ∃xA are handled similarly.
Case A → B. Let k′ ° A → B for all k′ º k with lh(k′) = lh(k) + n.

We show

∀lºk.l ° A ⇒ l ° B.

Let l º k and l ° A. We show that l ° B. We apply the IH to B
and m := max(lh(k) + n, lh(l)). So assume l′ º l and lh(l′) = m. It is
sufficient to show l′ ° B. If lh(l′) = lh(l), then l′ = l and we are done. If
lh(l′) = lh(k) + n > lh(l), then l′ is an extension of l as well as of k and
length lh(k) + n, and hence l′ ° A → B by assumption. Moreover, l′ ° A,
since l′ º l and l ° A. It follows that l′ ° B.

The cases A ∧ B and ∀xA are obvious. ¤

2.3. Coincidence and Substitution. The coincidence and substitu-
tion lemmas hold for Beth-structures.

Lemma (Coincidence). Let B be a Beth-structure, t a term, A a formula
and η, ξ assignments in |B|.
(a) If η(x) = ξ(x) for all x ∈ vars(t), then η(t) = ξ(t).
(b) If η(x) = ξ(x) for all x ∈ FV(A), then B, k ° A[η] ⇐⇒ B, k ° A[ξ].

Proof. Induction on terms and formulas. ¤

Lemma (Substitution). Let B be a Beth-structure, t, r terms, A a for-
mula and η an assignment in |B|. Then

(a) η(r[x := t]) = η
η(t)
x (r).

(b) B, k ° A[x := t][η] ⇐⇒ B, k ° A[η
η(t)
x].

Proof. Induction on terms and formulas. ¤

38 2. MODELS

2.4. Soundness. As usual, we proceed to prove soundness theorem.

Theorem (Soundness). Let Γ∪{A} be a set of formulas such that Γ ` A.
Then, if B is a Beth-structure, k a node and η an assignment in |B|, it follows
that B, k ° Γ[η] entails B, k ° A[η].

Proof. Induction on derivations.
We begin with the axiom schemes ∨+

0 , ∨+
1 , ∨−, ∃+ and ∃−. k ° C[η] is

abbreviated k ° C, when η is known from the context.
Case ∨+

0 : A → A ∨ B. We show k ° A → A ∨ B. Assume for k′ º k
that k′ ° A. Show: k′ ° A ∨ B. This follows from the definition, since
k′ ° A. The case ∨+

1 : B → A ∨ B is symmetric.
Case ∨− : A ∨ B → (A → C) → (B → C) → C. We show that

k ° A ∨ B → (A → C) → (B → C) → C. Assume for k′ º k that
k′ ° A ∨ B, k′ ° A → C and k′ ° B → C (we can safely assume that k′ is
the same for all three premises). Show that k′ ° C. By definition, there
is an n s.t. for all k′′ ºn k′, k′′ ° A or k′′ ° B. In both cases it follows
that k′′ ° C, since k′ ° A → C and k′ ° B → C. By the covering lemma,
k′ ° C.

Case ∃+ : A → ∃xA. Show that k ° (A → ∃xA)[η]. Assume that k′ º k

and k′ ° A[η]. Show that k′ ° (∃xA)[η]. Since η = η
η(x)
x there is an a ∈ |B|

(namely a := η(x)) such that k′ ° A[ηa
x]. Hence, k′ ° (∃xA)[η].

Case ∃− : ∃xA → (∀x.A → B) → B and x /∈ FV(B). We show that
k ° (∃xA → (∀x.A → B) → B)[η]. Assume that k′ º k and k′ ° (∃xA)[η]
and k′ ° (∀x.A → B)[η]. We show k′ ° B[η]. By definition, there is
an n such that for all k′′ ºn k′ we have a ∈ |B| and k′′ ° A[ηa

x]. From
k′ ° (∀x.A → B)[η] follows that k′′ ° B[ηa

x], and since x /∈ FV(B), from
the coincidence lemma, k′′ ° B[η]. Then, finally, by the covering lemma
k′ ° B[η].

Case →+. Let k ° Γ hold. We show that k ° A → B. Assume k′ º k
and k′ ° A. Our goal is k′ ° B. We have k′ ° Γ ∪ {A}. Thus, k′ ° B by
IH.

Case →−. Let k ° Γ hold. The IH gives us k ° A → B and k ° A.
Hence k ° B.

Case ∀+. Let k ° Γ[η] and x /∈ FV(Γ) hold. Show that k ° (∀xA)[η],
i.e. k ° A[ηa

x] for an arbitrary a ∈ |B|. We have

k ° Γ[ηa
x] by the coincidence lemma, since x /∈ FV(Γ)

k ° A[ηa
x] by IH.

Case ∀−. Let k ° Γ[η]. We show that k ° A[x := t][η]. We have

k ° (∀xA)[η] by IH

k ° A[ηη(t)
x] by definition

k ° A[x := t][η] by the substitution lemma.

This concludes the proof. ¤

2.5. Counter Models. With soundness at hand, it is easy to build
counter models for derivations not valid in minimal or intuitionistic logic.

3. COMPLETENESS OF MINIMAL AND INTUITIONISTIC LOGIC 39

A Beth-structure B = (D, I0, I1) for intuitionistic logic is a Beth-struc-
ture in which ⊥ is never forced, i.e. I1(⊥, k) = 0 for all k. Thus, in Beth-
structures for intuitionistic logic we have

k ° ¬A ⇐⇒ ∀k′ºk k′ 6° A,

k ° ¬¬A ⇐⇒ ∀k′ºk k′ 6° ¬A

⇐⇒ ∀k′ºk∃k′′ºk′ k′′ ° A.

As an example, we show that 6`i ¬¬P → P . We describe the desired
Beth-structure by means of a diagram below. Next to each node, we write
the propositions forced on that node.

•@
@

¡
¡

•P •@
@

¡
¡

•P •@
@

¡
¡

•P •..
.

The it is easily seen that

〈〉 6° P, 〈〉 ° ¬¬P.

Thus 〈〉 6° ¬¬P → P and hence 6` ¬¬P → P . Since for each R and all k,
k ° EfqR, it also follows that 6`i ¬¬P → P . The model also shows that the
Pierce formula ((P → Q) → P) → P is invalid in intuitionistic logic.

3. Completeness of Minimal and Intuitionistic Logic

Next, we show the converse of soundness theorem, for minimal as well
as intuitionistic logic.

3.1. Completeness of Minimal Logic.

Theorem (Completeness). Let Γ ∪ {A} be a set of formulas. Then the
following propositions are equivalent.

(a) Γ ` A.
(b) Γ ° A, i.e. for all Beth-structures B, nodes k and assignments η

B, k ° Γ[η] ⇒ B, k ° A[η].

Proof. Soundness is one direction. For the other direction we employ a
technique developed by Harvey Friedman and construct a Beth-structure B
(over the set T01 of all finite 0-1-sequences k ordered by the initial segment
relation k ¹ k′) with the property that Γ ` B is equivalent to B, 〈〉 ° B[id].

In order to define B, we will need an enumeration A0, A1, A2, . . . of L-
formulas, in which each formula occurs countably many times. We also fix
an enumeration x0, x1, . . . of variables. Let Γ =

⋃

n Γn be the union of finite
sets Γn such that Γn ⊆ Γn+1. With each node k ∈ T01, we associate a finite
set ∆k of formulas by induction on the length of k.

Let ∆〈〉 := ∅. Take a node k such that lh(k) = n and suppose that ∆k is
already defined. Write ∆ `n B to mean that there is a derivation of length
≤ n of B from ∆. We define ∆k0 and ∆k1 as follows:

Case 1. Γn, ∆k 6`n An. Then let

∆k0 := ∆k and ∆k1 := ∆k ∪ {An}.

40 2. MODELS

Case 2. Γn, ∆k `n An = A′
n ∨ A′′

n. Then let

∆k0 := ∆k ∪ {An, A′
n} and ∆k1 := ∆k ∪ {An, A′′

n}.
Case 3. Γn, ∆k `n An = ∃xA′

n. Then let

∆k0 := ∆k1 := ∆k ∪ {An, A′
n[x := xi]}.

xi is the first variable /∈ FV(Γn, An, ∆k).
Case 4. Γn, ∆k `n An, and An is neither a disjunction nor an existen-

tially quantified formula. Then let

∆k0 := ∆k1 := ∆k ∪ {An}.
Obviously k ¹ k′ implies that ∆k ⊆ ∆k′ . We note that

(6) ∀k′ºnk Γ, ∆k′ ` B ⇒ Γ, ∆k ` B.

It is sufficient to show

Γ, ∆k0 ` B and Γ, ∆k1 ` B ⇒ Γ, ∆k ` B.

In cases 1 and 4, this is obvious. For cases 2 and 3, it follows immediately
from the axiom schemes ∨− and ∃−.

Next, we show

(7) Γ, ∆k ` B ⇒ ∃n∀k′ºnk B ∈ ∆k′ .

We choose n ≥ lh(k) such that B = An and Γn, ∆k `n An. For all k′ º k, if
lh(k′) = n + 1 then An ∈ ∆k′ (cf. the cases 2-4).

Using the sets ∆k we can define an L-Beth-structure B as (TerL, I0, I1)
(where TerL denotes the set of terms of L) and the canonical I0(f)~t := f~t
and

~t ∈ I1(R, k) :⇐⇒ R~t ∈ ∆k.

Obviously, tB[id] = t for all L-terms t.
We show that

(8) Γ, ∆k ` B ⇐⇒ B, k ° B[id],

by induction on the complexity of B. For B, k ° B[id] we write k ° B.
Case R~t. The following propositions are equivalent.

Γ, ∆k ` R~t

∃n∀k′ºnk R~t ∈ ∆k′ by (7) and (6)

∃n∀k′ºnk~t ∈ I1(R, k′) by definition of B
k ° R~t by definition of °, since tB[id] = t.

Case B ∨ C. ⇒. Let Γ, ∆k ` B ∨ C. Choose an n ≥ lh(k) such that
Γn, ∆k `n An = B ∨ C. Then, for all k′ º k s.t. lh(k′) = n it follows that

∆k′0 = ∆k′ ∪ {B ∨ C, B} and ∆k′1 = ∆k′ ∪ {B ∨ C, C},
and by IH

k′0 ° B and k′1 ° C.

By definition, we have k ° B ∨ C. ⇐.

k ° B ∨ C

∃n∀k′ºnk .k′ ° B or k′ ° C

3. COMPLETENESS OF MINIMAL AND INTUITIONISTIC LOGIC 41

∃n∀k′ºnk .Γ, ∆k′ ` B or Γ, ∆k′ ` C by IH

∃n∀k′ºnk Γ, ∆k′ ` B ∨ C

Γ, ∆k ` B ∨ C by (6).

The case B ∧ C is evident.
Case B → C. ⇒. Let Γ, ∆k ` B → C. We must show k ° B → C, i.e.,

∀k′ºk.k′ ° B ⇒ k′ ° C.

Let k′ º k be such that k′ ° B. By IH, it follows that Γ, ∆k′ ` B, and
Γ, ∆k′ ` C follows by assumption. Then again by IH k′ ° C.

⇐. Let k ° B → C, i.e. ∀k′ºk.k′ ° B ⇒ k′ ° C. We show that
Γ, ∆k ` B → C. At this point, we apply (6). Choose an n ≥ lh(k) such
that B = An. Let k′ ºm k be such that m := n − lh(k). We show that
Γ, ∆k′ ` B → C. If Γ, ∆k′ `n An, then k′ ° B by IH, and k′ ° C by
assumption, hence Γ, ∆k′ ` C again by IH and thus Γ, ∆k′ ` B → C.

If Γ, ∆k′ 6`n An then by definition ∆k′1 = ∆k′ ∪ {B}, hence Γ, ∆k′1 ` B,
and k′1 ° B by IH. Now k′1 ° C by assumption, and finally Γ, ∆k′1 ` C by
IH. From ∆k′1 = ∆k′ ∪ {B}, it follows that Γ, ∆k′ ` B → C.

Case ∀xB. The following propositions are equivalent.

Γ, ∆k ` ∀xB

∀t∈TerL Γ, ∆k ` B[x := t]

∀t∈TerL k ° B[x := t] by IH

∀t∈TerL k ° B[idt
x] by the substitution lemma, since tB[id] = t

k ° ∀xB by definition of °.

Case ∃xB. This case is similar to the case ∨. The proof proceeds as
follows. ⇒. Let Γ, ∆k ` ∃xB. Choose an n ≥ lh(k) such that Γn, ∆k `n

An = ∃xB. Then, for all k′ º k such that lh(k′) = n it follows that

∆k′0 = ∆k′1 = ∆k ∪ {∃xB, B[x := xi]}
where xi is not free in ∆k ∪ {∃xB}. Hence by IH

k′0 ° B[x := xi] and k′1 ° B[x := xi].

It follows by definition that k ° ∃xB. ⇐.

k ° ∃xB

∃n∀k′ºnk∃t∈TerL k′ ° B[idt
x]

∃n∀k′ºnk∃t∈TerL k′ ° B[x := t]

∃n∀k′ºnk∃t∈TerL Γ, ∆k′ ` B[x := t] by IH

∃n∀k′ºnk Γ, ∆k′ ` ∃xB

Γ, ∆k ` ∃xB by (6).

Now, we are in a position to finalize the proof of the completeness the-
orem. We apply (b) to the Beth-structure B constructed above from Γ, the
empty node 〈〉 and the assignment η = id. Then B, 〈〉 ° Γ[id] by (8), hence
B, 〈〉 ° A[id] by assumption and therefore Γ ` A by (8) again. ¤

42 2. MODELS

3.2. Completeness of Intuitionistic Logic. Completeness of intu-
itionistic logic follows as a corollary.

Corollary. Let Γ ∪ {A} be a set of formulas. The following proposi-
tions are equivalent.

(a) Γ `i A.
(b) Γ, Efq ° A, i.e., for all Beth-structures B for the intuitionistic logic,

nodes k and assignments η

B, k ° Γ[η] ⇒ B, k ° A[η]. ¤

4. Completeness of Classical Logic

We give a proof of completeness of classical logic relying on the com-
pleteness proof for minimal logic above. Write Γ |= A to mean that, for all
structures M and assignments η,

M |= Γ[η] ⇒ M |= A[η].

4.1. The Completeness Theorem.

Theorem (Completeness). Let Γ∪{A} be a set of formulas (in L). The
following propositions are equivalent.

(a) Γ `c A.
(b) Γ |= A.

Proof. Soundness is one direction. For the other direction, we adapt
the completeness of minimal logic.

Evidently, it is sufficient to treat formulas without ∨, ∃ and ∧ (by
Lemma 2.4).

Let Γ 6`c A, i.e., Γ, Stab 6` A. By the completeness theorem of minimal
logic, there is a Beth-structure B = (TerL, I0, I1) on the complete binary
tree T01 and a node l0 such that l0 ° Γ, Stab and l0 6° A (we write k ° B
for B, k ° B[id]).

A node k is consistent if k 6° ⊥, and stable if k ° Stab. Let k be a stable
node, and B a formula (without ∨, ∃ and ∧). Then, Stab ` ¬¬B → B by
the stability lemma. Hence, k ° ¬¬B → B, and

k 6° B ⇐⇒ k 6° ¬¬B

⇐⇒ ∃k′ºk.k′ consistent and k′ ° ¬B.(9)

Let α be a branch in the underlying tree T01. We define

α ° A :⇐⇒ ∃k∈α k ° A,

α is consistent :⇐⇒ α 6° ⊥,

α is stable :⇐⇒ ∃k∈α k ° Stab.

Note that

(10) from α ° ~A and ` ~A → B it follows that α ° B.

To see this, consider α ° ~A. Then k ° ~A for a k ∈ α, since α is linearly

ordered. From ` ~A → B it follows that k ° B, i.e., α ° B.

4. COMPLETENESS OF CLASSICAL LOGIC 43

A branch α is generic (in the sense that it generates a classical model)
if it is consistent and stable, if in addition for all formulas B

(11) α ° B or α ° ¬B,

and for all formulas ∀~yB (with ~y not empty) where B is not universally
quantified

(12) ∀~s∈TerL α ° B[~y := ~s] ⇒ α ° ∀~yB

For a branch α, we define a classical structure Mα = (TerL, I0, I
α
1) as

Iα
1 (R) :=

⋃

k∈α

I1(R, k) for R 6= ⊥.

We show that for every generic branch α and each formula B with all con-
nectives in {→,∀}
(13) α ° B ⇐⇒ Mα |= B.

The proof is by induction on the logical complexity of B.
Case R~t, R 6= ⊥. Then the proposition holds for all α.
Case ⊥. We have α 6° ⊥ for all consistent α.
Case B → C. ⇒. Let α ° B → C and Mα |= B. We must show

that Mα |= C. Note that α ° B by IH, hence α ° C, hence Mα |= C
again by IH. ⇐. Let Mα |= B → C. If Mα |= B, then Mα |= C, hence
α ° C by IH and therefore α ° B → C. If Mα 6|= B, then α 6° B by IH,
hence α ° ¬B by (11) and therefore α ° B → C, since α is stable (and
` (¬¬C → C) → ⊥ → C).

Case ∀~yB (~y not empty) where B is not universally quantified. The
following propositions are equivalent.

α ° ∀~yB

∀~s∈TerL α ° B[~y := ~s] by (12)

∀~s∈TerLMα |= B[~y := ~s] by IH

Mα |= ∀~yB.

We show that for each consistent stable node k, there is a generic branch
containing k. For the purposes of the proof, we let A0, A1, . . . be an enumer-
ation of formulas. We define a sequence k = k0 ¹ k1 ¹ k2 . . . of consistent
stable nodes inductively. Let k0 := k. Assume that kn is defined. We write
An in the form ∀~yB (~y possibly empty) and B is not a universal formula. In
case kn ° ∀~yB let kn+1 := kn. Otherwise we have kn 6° B[~y := ~s] for some
~s, and by (9) there is a consistent node k′ º kn such that k′ ° ¬B[~y := ~s].
Let kn+1 := k′. Since kn ¹ kn+1, the node kn+1 is stable.

Let α := { l | ∃n l ¹ kn }, hence k ∈ α. We show that α is generic.
Clearly α is consistent and stable. The propositions (11) and (12) can be
proved simultaneously. Let C = ∀~yB, where B is not a universal formula,
and choose n, C = An. In case kn ° ∀~yB we are done. Otherwise we have
kn 6° B[~y := ~s] for some ~s, and by construction kn+1 ° ¬B[~y := ~s]. For (11)
we get kn+1 ° ¬∀~yB (since ` ∀~yB → B[~y := ~s]), and (12) follows from the
consistency of α.

We are now in a position to give a proof of completeness. Since l0 6° A
and l0 is stable, (9) yields a consistent node k º l0 such that k ° ¬A.

44 2. MODELS

Evidently, k is stable as well. By the proof above, there is a generic branch
α such that k ∈ α. Since k ° ¬A it follows that α ° ¬A, hence Mα |= ¬A
by (13). Moreover, α ° Γ, and Mα |= Γ follow by (13). Then, Γ 6|= A. ¤

4.2. Compactness, Löwenheim-Skolem Theorem. The complete-
ness theorem has many important corollaries. We mention only two. A set Γ
of L-formulas is consistent if Γ 6`c ⊥, and satisfiable if there is an L-structure
M and an assignment η in |M| such that M |= B[η] for all B ∈ Γ.

Corollary. Let Γ be a set of L-formulas.

(a) If Γ is consistent, then Γ is satisfiable.
(b) (Compactness theorem). If each finite subset of Γ is satisfiable, Γ is

satisfiable.

Proof. (a). From Γ 6`c ⊥ we obtain Γ 6|= ⊥ by the completeness theo-
rem, and this implies satisfiability of Γ.

(b). Otherwise we have Γ |= ⊥, hence Γ `c ⊥ by the completeness
theorem, hence also Γ0 `c ⊥ for a finite subset Γ0 ⊆ Γ, and therefore
Γ0 |= ⊥ contrary to our assumption that Γ0 has a model. ¤

Corollary (Löwenheim and Skolem). Let Γ be a set of L-formulas (we
assume that L is countable). If Γ is satisfiable, then Γ is satisfiable on an
L-structure with a countable carrier set.

Proof. We make use of the proof of the completeness theorem with
A = ⊥. It either yields Γ `c ⊥ (which is excluded by assumption), or else a
model of Γ ∪ {¬⊥}, whose carrier set is the countable set TerL. ¤

5. Uncountable Languages

We give a second proof of the completeness theorem for classical logic,
which works for uncountable languages as well. This proof makes use of the
axiom of choice (in the form of Zorns lemma).

5.1. Filters and Ultrafilters. Let M 6= ∅ be a set. F ⊆ P(M) is
called filter on M , if

(a) M ∈ F and ∅ /∈ F ;
(b) if X ∈ F and X ⊆ Y ⊆ M , then Y ∈ F ;
(c) X, Y ∈ F entails X ∩ Y ∈ F .

F is called ultrafilter , if for all X ∈ P(M)

X ∈ F or M \ X ∈ F .

The intuition here is that the elements X of a filter F are considered to be
“big”. For instance, for M infinite the set F = {X ⊆ M | M \ X finite } is
a filter.

Lemma. Suppose F is an ultrafilter and X ∪ Y ∈ F . Then X ∈ F or
Y ∈ F .

Proof. If both X and Y are not in F , then M \ X and M \ Y are in
F , hence also (M \ X) ∩ (M \ Y), which is M \ (X ∪ Y). This contradicts
the assumption X ∪ Y ∈ F . ¤

5. UNCOUNTABLE LANGUAGES 45

Let M 6= ∅ be a set and S ⊆ P(M). S has the finite intersection
property , if X1 ∩ · · · ∩ Xn 6= ∅ for all X1, . . . , Xn ∈ S and all n ∈ N.

Lemma. If S has the finite intersection property, then there exists a
filter F on M such that F ⊇ S.

Proof. F := {X | X ⊇ X1 ∩ · · · ∩ Xn for some X1, . . . , Xn ∈ S }. ¤

Lemma. Let M 6= ∅ be a set and F a filter on M . Then there is an
ultrafilter U on M such that U ⊇ F .

Proof. By Zorns lemma (which will be proved - from the axiom of
choice - in Chapter 5), there is a maximal filter U with F ⊆ U . We claim
that U is an ultrafilter. So let X ⊆ M and assume X /∈ U and M \ X /∈ U .
Since U is maximal, U ∪ {X} cannot have the finite intersection property;
hence there is a Y ∈ U such that Y ∩ X = ∅. Similary we obtain Z ∈ U
such that Z ∩ (M \ X) = ∅. But then Y ∩ Z = ∅, a contradiction. ¤

5.2. Products and Ultraproducts. Let M 6= ∅ be a set and Ai 6= ∅
sets for i ∈ M . Let
∏

i∈M

Ai := {α | α is a function, dom(α) = M and α(i) ∈ Ai for all i ∈ M }.

Observe that, by the axiom of choice,
∏

i∈M Ai 6= ∅. We write α ∈ ∏

i∈M Ai

as 〈α(i) | i ∈ M 〉.
Now let M 6= ∅ be a set, F a filter on M and Ai structures for i ∈ M .

Then the F -product structure A =
∏F

i∈M Ai is defined by

(a) |A| :=
∏

i∈M |Ai| (notice that |A| 6= ∅).
(b) for an n-ary relation symbol R and α1, . . . , αn ∈ |A| let

RA(α1, . . . , αn) :⇐⇒ { i ∈ M | RAi(α1(i), . . . , αn(i)) } ∈ F.

(c) for an n-ary function symbol f and α1, . . . , αn ∈ |A| let

fA(α1, . . . , αn) := 〈 fAi(α1(i), . . . , αn(i)) | i ∈ M 〉.

For an ultrafilter U we call A =
∏U

i∈M Ai the U -ultraproduct of the Ai for
i ∈ M .

5.3. The Fundamental Theorem on Ultraproducts. The prop-
erties of ultrafilters correspond in a certain sense to the definition of the
consequence relation |=. For example, for an ultrafilter U we have

M |= (A ∨ B)[η] ⇐⇒ M |= A[η] or M |= B[η]

X ∪ Y ∈ U ⇐⇒ X ∈ U or Y ∈ U

and

M |= ¬A[η] ⇐⇒ M 6|= A[η]

X /∈ U ⇐⇒ M \ X ∈ U.

This is the background of the following theorem.

46 2. MODELS

Theorem (Fundamental Theorem on Ultraproducts, ÃLoś 1955). Let

A =
∏U

i∈M Ai be an U -ultraproduct, A a formula and η an assignment
in |A| . Then we have

A |= A[η] ⇐⇒ { i ∈ M | Ai |= A[ηi] } ∈ U,

where ηi is the assignment induced by ηi(x) = η(x)(i) for i ∈ M .

Proof. We first prove a similar property for terms.

(14) tA[η] = 〈 tAi [ηi] | i ∈ M 〉.
The proof is by induction on t. For a variable the claim follows from the
definition. Case ft1 . . . tn. For simplicity assume n = 1; so we consider ft.
We obtain

(ft)A[η] = fA(tA[η])

= fA(〈 tAi [ηi] | i ∈ M 〉) by IH

= 〈 (ft)Ai [ηi] | i ∈ M 〉.
Case Rt1 . . . tn. For simplicity assume n = 1; so consider Rt. We obtain

A |= Rt[η] ⇐⇒ RA(tA[η])

⇐⇒ { i ∈ M | RAi(tA[η](i)) } ∈ U

⇐⇒ { i ∈ M | RAi(tAi [ηi]) } ∈ U by (14)

⇐⇒ { i ∈ M | Ai |= Rt[ηi] } ∈ U.

Case A → B.

A |= (A → B)[η]

⇐⇒ if A |= A[η], then A |= B[η]

⇐⇒ if { i ∈ M | Ai |= A[ηi] } ∈ U , then { i ∈ M | Ai |= B[ηi] } ∈ U

by IH

⇐⇒ { i ∈ M | Ai |= A[ηi] } /∈ U or { i ∈ M | Ai |= B[ηi] } ∈ U

⇐⇒ { i ∈ M | Ai |= ¬A[ηi] } ∈ U or { i ∈ M | Ai |= B[ηi] } ∈ U

for U is an ultrafilter

⇐⇒ { i ∈ M | Ai |= (A → B)[ηi] } ∈ U.

Case ∀xA.

A |= (∀xA)[η]

⇐⇒ for all α ∈ |A|, A |= A[ηα
x]

⇐⇒ for all α ∈ |A|, { i ∈ M | Ai |= A[(ηi)
α(i)
x] } ∈ U by IH

⇐⇒ { i ∈ M | for all a ∈ |Ai|, Ai |= A[(ηi)
a
x] } ∈ U see below(15)

⇐⇒ { i ∈ M | Ai |= (∀xA)[ηi] } ∈ U.

It remains to show (15). Let X := { i ∈ M | for all a ∈ |Ai|, Ai |= A[(ηi)
a
x] }

and Yα := { i ∈ M | Ai |= A[(ηi)
α(i)
x] } for α ∈ |A|.

⇐. Let α ∈ |A| and X ∈ U . Clearly X ⊆ Yα, hence also Yα ∈ U .

5. UNCOUNTABLE LANGUAGES 47

⇒. Let Yα ∈ U for all α. Assume X /∈ U . Since U is an ultrafilter,

M \ X = { i ∈ M | there is an a ∈ |Ai| such that Ai 6|= A[(ηi)
a
x] } ∈ U.

We choose by the axiom of choice an α0 ∈ |A| such that

α0(i) =

{

some a ∈ |Ai| such that Ai 6|= A[(ηi)
a
x] if i ∈ M \ X,

an arbitrary ∈ |Ai| otherwise.

Then Yα0
∩ (M \ X) = ∅, contradicting Yα0

, M \ X ∈ U . ¤

If we choose Ai = B constant, then A =
∏U

i∈M B satisfies the same for-
mulas as B (such structures will be called elementary equivalent in section 6;

the notation is A ≡ B).
∏U

i∈M B is called an ultrapower of B.

5.4. General Compactness and Completeness.

Corollary (General Compactness Theorem). Every finitely satisfiable
set Γ of formulas is satisfiable.

Proof. Let M := { i ⊆ Γ | i finite }. For i ∈ M let Ai be a model of
i under the assignment ηi. For A ∈ Γ let ZA := { i ∈ M | A ∈ i } = { i ⊆
Γ | i finite and A ∈ i }. Then F := {ZA | A ∈ Γ } has the finite intersection
property (for {A1, . . . , An} ∈ ZA1

∩ . . . ZAn). By the lemmata in 5.1 there is

an ultrafilter U on M such that F ⊆ U . We consider A :=
∏U

i∈M Ai and the
product assigment η such that η(x)(i) := ηi(x), and show A |= Γ[η]. So let
A ∈ Γ. By the theorem it suffices to show XA := { i ∈ M | Ai |= A[ηi] } ∈ U .
But this follows form ZA ⊆ XA and ZA ∈ F ⊆ U . ¤

An immediate consequence is that if Γ |= A, then there exists a finite
subset Γ′ ⊆ Γ such that Γ′ |= A.

For every set Γ of formulas let L(Γ) be the set of all function and relation
symbols occurring in Γ. If L is a sublanguage of L′, M an L-structure and
M′ an L′-structure, then M′ is called an expansion of M (and M a reduct of

M′), if |M| = |M′|, fM = fM′

for all function symbols and RM = RM′

for
all relation symbols in the language L. The (uniquely determined) L-reduct
of M′ is denoted by M′¹L. If M′ is an expansion of M and η an assignment
in |M|, then clearly tM[η] = tM

′

[η] for every L-term t and M |= A[η] iff
M′ |= A[η] for every L-formula A. Hence the validity of Γ |= A does not
depend on the underlying language L, as long as L(Γ ∪ {A}) ⊆ L (or more
precisely ⊆ FunL ∪ RelL).

Corollary (General Completeness Theorem). Let Γ ∪ {A} be a set of
formulas, where the underlying language may be uncountable. Then

Γ `c A ⇐⇒ Γ |= A.

Proof. One direction again is the soundness theorem. For the converse
we can assume (by the first remark above) that for some finite Γ′ ⊆ Γ we
have Γ′ |= A. But then we have Γ′ |= A in a countable language (by the
second remark above). By the completeness theorem for countable languages
we obtain Γ′ `c A, hence also Γ `c A. ¤

48 2. MODELS

6. Basics of Model Theory

In this section we will (as is common in model theory) also allow uncount-
able languages L. As we have just seen, completeness as well as compactness
hold for such languages as well.

6.1. Equality Axioms. We first consider equality axioms. So we as-
sume in this section that our underlying language L contains a binary rela-
tion symbol =. The set EqL of L-equality axioms consists of (the universal
closures of)

x = x (reflexivity),

x = y → y = x (symmetry),

x = y → y = z → x = z (transitivity),

x1 = y1 → · · · → xn = yn → fx1 . . . xn = fy1 . . . yn,

x1 = y1 → · · · → xn = yn → Rx1 . . . xn → Ry1 . . . yn,

for all n-ary function symbols f and relation symbols R of the language L.

Lemma (Equality). (a) EqL ` t = s → r[x := t] = r[x := s].
(b) EqL ` t = s → (A[x := t] ↔ A[x := s]).

Proof. (a). Induction on r. (b). Induction on A; we only consider
the case ∀yA. Then (∀yA)[x := r] = ∀yA[x := r], and by IH we have
EqL ` t = s → A[x := t] → A[x := s]. This entails the claim. ¤

An L-structure M satisfies the equality axioms iff =M is a congruence
relation (i.e., an equivalence relation compatible with the functions and
relations of M). In this section we assume that all L-structures considered
M satisfy the equality axioms. The coincidence lemma then also holds with
=M instead of =:

Lemma (Coincidence). Let η and ξ be assignments in |M| such that
dom(η) = dom(ξ) and η(x) =M ξ(x) for all x ∈ dom(η). Then

(a) tM[η] =M tM[ξ] if vars(t) ⊆ dom(η) and
(b) M |= A[η] ⇐⇒ M |= A[ξ] if FV(A) ⊆ dom(η).

Proof. Induction on t and A, respectively. ¤

6.2. Cardinality of Models. Let M/=M be the quotient structure,
whose carrier set consists of congruence classes. We call a structure M
infinite (countable, of cardinality n), if M/=M is infinite (countable, of
cardinality n).

By an axiom system Γ we understand a set of closed formulas such that
EqL(Γ) ⊆ Γ. A model of an axiom system Γ is an L-structure M such that

L(Γ) ⊆ L and M |= Γ. For sets Γ of closed formulas we write

ModL(Γ) := {M | M is an L-structure and M |= Γ ∪ EqL }.
Clearly Γ is satisfiable iff Γ has a model.

Theorem. If an axiom system has arbitrarily large finite models, then
it has an infinite model.

6. BASICS OF MODEL THEORY 49

Proof. Let Γ be such an axiom system. Suppose x0, x1, x2, . . . are
distinct variables and

Γ′ := Γ ∪ {xi 6= xj | i, j ∈ N such that i < j }.
By assumption every finite subset of Γ′ is satisfiable, hence by the general
compactness theorem so is Γ′. Then we have M and η such that M |= Γ′[η]
and therefore η(xi) 6=M η(xj) for i < j. Hence M is infinite. ¤

6.3. Complete Theories, Elementary Equivalence. Let L be the
set of all closed L-formulas. By a theory T we mean an axiom system closed
under `c, so EqL(T) ⊆ T and

T = {A ∈ L(T) | T `c A }.
A theory T is called complete, if for every formula A ∈ L(T), T `c A or
T `c ¬A.

For every L-structure M (satisfying the equality axioms) the set of all
closed L-formulas A such that M |= A clearly is a theory; it is called the
theory of M and denoted by Th(M).

Two L-structures M and M′ are called elementarily equivalent (written
M ≡ M′), if Th(M) = Th(M′). Two L-structures M and M′ are called
isomorphic (written M ∼= M′), if there is a map π : |M| → |M′| inducing a

bijection between |M/=M| and |M′/=M′ |, so

∀a, b∈|M|.a =M b ⇐⇒ π(a) =M′

π(b),

(∀a′∈|M′|)(∃a∈|M|)π(a) =M′

a′,

such that for all a1, . . . , an ∈ |M|
π(fM(a1, . . . , an)) =M′

fM′

(π(a1), . . . , π(an)),

RM(a1, . . . , an) ⇐⇒ RM′

(π(a1), . . . , π(an))

for all n-ary function symbols f and relation symbols R of the language L.
We first collect some simple properties of the notions of the theory of a

structure M and of elementary equivalence.

Lemma. (a) Th(M) ist complete.
(b) If Γ is an axiom system such that L(Γ) ⊆ L, then

{A ∈ L | Γ `c A } =
⋂

{Th(M) | M ∈ ModL(Γ) }.
(c) M ≡ M′ ⇐⇒ M |= Th(M′).
(d) If L is countable, then for every L-structure M there is a countable

L-structure M′ such that M ≡ M′.

Proof. (a). Let M be an L-structure and A ∈ L. Then M |= A or
M |= ¬A, hence Th(M) `c A or Th(M) `c ¬A.

(b). For all A ∈ L we have

Γ `c A ⇐⇒ Γ |= A

⇐⇒ for all L-structures M, (M |= Γ ⇒ M |= A)

⇐⇒ for all L-structures M, (M ∈ ModL(Γ) ⇒ A ∈ Th(M))

⇐⇒ A ∈
⋂

{Th(M) | M ∈ ModL(Γ) }.

50 2. MODELS

(c). ⇒. Assume M ≡ M′ and A ∈ Th(M′). Then M′ |= A, hence
M |= A.

⇐. Assume M |= Th(M′). Then clearly Th(M′) ⊆ Th(M). For the
converse inclusion let A ∈ Th(M). If A /∈ Th(M′), by (a) we would also
have ¬A ∈ Th(M′), hence M |= ¬A contradicting A ∈ Th(M).

(d). Let L be countable and M an L-structure. Then Th(M) is satis-
fiable and therefore by the theorem of Löwenheim and Skolem possesses
a satisfying L-structure M′ with a countable carrier set TerL. By (c),
M ≡ M′. ¤

Moreover, we can characterize complete theories as follows:

Theorem. Let T be a theory and L = L(T). Then the following are
equivalent.

(a) T is complete.
(b) For every model M ∈ ModL(T), Th(M) = T .
(c) Any two models M,M′ ∈ ModL(T) are elementarily equivalent.

Proof. (a) ⇒ (b). Let T be complete and M ∈ ModL(T). Then
M |= T , hence T ⊆ Th(M). For the converse assume A ∈ Th(M). Then
¬A /∈ Th(M), hence ¬A /∈ T and therefore A ∈ T .

(b) ⇒ (c) is clear.
(c) ⇒ (a). Let A ∈ L and T 6`c A. Then there is a model M0 of

T ∪ {¬A}. Now let M ∈ ModL(T) be arbitrary. By (c) we have M ≡ M0,
hence M |= ¬A. Therefore T `c ¬A. ¤

6.4. Elementary Equivalence and Isomorphism.

Lemma. Let π be an isomorphism between M and M′. Then for all
terms t and formulas A and for every sufficiently big assignment η in |M|
(a) π(tM[η]) =M′

tM
′

[π ◦ η] and
(b) M |= A[η] ⇐⇒ M′ |= A[π ◦ η]. In particular,

M ∼= M′ ⇒ M ≡ M′.

Proof. (a). Induction on t. For simplicity we only consider the case of
a unary function symbol.

π(xM[η]) = π(η(x)) = xM′

[π ◦ η]

π(cM[η]) = π(cM) =M′

cM
′

π((ft)M[η]) = π(fM(tM[η]))

=M′

fM′

(π(tM[η]))

=M′

fM′

(tM
′

[π ◦ η])

= (ft)M
′

[π ◦ η].

(b). Induction on A. For simplicity we only consider the case of a unary
relation symbol and the case ∀xA.

M |= Rt[η] ⇐⇒ RM(tM[η])

⇐⇒ RM′

(π(tM[η]))

⇐⇒ RM′

(tM
′

[π ◦ η])

6. BASICS OF MODEL THEORY 51

⇐⇒ M′ |= Rt[π ◦ η],

M |= ∀xA[η] ⇐⇒ for all a ∈ |M|, M |= A[ηa
x]

⇐⇒ for all a ∈ |M|, M′ |= A[π ◦ ηa
x]

⇐⇒ for all a ∈ |M|, M′ |= A[(π ◦ η)
π(a)
x]

⇐⇒ for all a′ ∈ |M′|, M′ |= A[(π ◦ η)a′

x]

⇐⇒ M′ |= ∀xA[π ◦ η]

This concludes the proof. ¤

The converse, i.e. that M ≡ M′ implies M ∼= M′, is true for finite
structures (see exercise sheet 9), but not for infinite ones:

Theorem. For every infinite structure M there is an elementarily equi-
valent structure M0 not isomorphic to M.

Proof. Let =M be the equality on M := |M|, and let P(M) denote
the power set of M . For every α ∈ P(M) choose a new constant cα. In the
language L′ := L ∪ { cα | α ∈ P(M) } we consider the axiom system

Γ := Th(M) ∪ { cα 6= cβ | α, β ∈ P(M) and α 6= β } ∪ EqL′ .

Every finite subset of Γ is satisfiable by an appropriate expansion of M.
Hence by the general compactness theorem also Γ is satisfiable, say by M′

0.
Let M0 := M′

0¹L. We may assume that =M0 is the equality on |M0|. M0

is not isomorphic to M, for otherwise we would have an injection of P(M)
into M and therefore a contradiction. ¤

6.5. Non Standard Models. By what we just proved it is impossi-
ble to characterize an infinite structure by a first order axiom system up
to isomorphism. However, if we extend first order logic by also allowing
quantification over sets X, we can formulate the following Peano axioms

∀n S(n) 6= 0,

∀n∀m.S(n) = S(m) → n = m,

∀X.0 ∈ X → (∀n.n ∈ X → S(n) ∈ X) → ∀n n ∈ X.

One can show easily that (N, 0, S) is up to isomorphism the unique model
of the Peano axioms. A structure which is elementarily equivalent, but not
isomorphic to N := (N, 0, S), is called a non standard model of the natural
numbers. In non standard models of the natural numbers the principle of
complete induction does not hold for all sets X ⊆ N.

Similarly, a structure which is elementarily equivalent, but not isomor-
phic to (R, 0, 1, +, ·, <) is called a non standard model of the reals. In every
non standard model of the reals the completeness axiom

∀X.∅ 6= X bounded → ∃y.y = sup(X)

does not hold for all sets X ⊆ R.

Theorem. There are countable non standard models of the natural num-
bers.

52 2. MODELS

Proof. Let x be a variable and

Γ := Th(N) ∪ {x 6= n | n ∈ N },

where 0 := 0 and n + 1 := Sn. Clearly every finite subset of Γ is satisfiable,
hence by compactness also Γ. By the theorem of Löwenheim and Skolem we
then have a countable or finite M and an assignment η such that M |= Γ[η].
Because of M |= Th(N) we have M ≡ N by 6.3; hence M is countable.
Moreover η(x) 6=M nM for all n ∈ N, hence M 6∼= N . ¤

6.6. Archimedian Ordered Fields. We now consider some easy ap-
plications to well-known axiom systems.

The axioms of field theory are (the equality axioms and)

x + (y + z) = (x + y) + z,

0 + x = x,

(−x) + x = 0,

x + y = y + x,

x · (y · z) = (x · y) · z,

1 · x = x,

x 6= 0 → x−1 · x = 1,

x · y = y · x,

and also

(x + y) · z = (x · z) + (y · z),

1 6= 0.

Fields are the models of this axiom system.
In the theory of ordered fields one has in addition a binary relation

symbol < and as axioms

x 6< x,

x < y → y < z → x < z,

x < y ∨cl x = y ∨cl y < x,

x < y → x + z < y + z,

0 < x → 0 < y → 0 < x · y.

Ordered fields are the models of this extended axiom system. An ordered
field is called archimedian ordered , if for every element a of the field there
is a natural number n such that a is less than the n-fold multiple of the 1
in the field.

Theorem. For every archimedian ordered field there is an elementarily
equivalent ordered field that is not archimedian ordered.

Proof. Let K be an archimedian ordered field, x a variable and

Γ := Th(K) ∪ {n < x | n ∈ N }.

Clearly every finite subset of Γ is satisfiable, hence by the general compact-
ness theorem also Γ. Therefore we have M and η such that M |= Γ[η].
Because of M |= Th(K) we obtain M ≡ K and hence M is an ordered
field. Moreover 1M · n <M η(x) for all n ∈ N, hence M is not archimedian
ordered. ¤

6. BASICS OF MODEL THEORY 53

6.7. Axiomatizable Structures. A class S of L-structures is called
(finitely) axiomatizable, if there is a (finite) axiom system Γ such that
S = ModL(Γ). Clearly S is finitely axiomatizable iff S = ModL({A}) for
some formula A. If for every M ∈ S there is an elementarily equivalent
M′ /∈ S, then S cannot possibly be axiomatizable. By the theorem above
we can conclude that the class of archimedian ordered fields is not axiom-
atizable. It also follows that the class of non archimedian ordered fields is
not axiomatizable.

Lemma. Let S be a class of L-structures and Γ an axiom system.

(a) S is finitely axiomatizable iff S and the complement of S are axiomati-
zable.

(b) If ModL(Γ) is finitely axiomatizable, then there is a finite Γ0 ⊆ Γ such
that ModL(Γ0) = ModL(Γ).

Proof. (a). Let 1 − S denote the complement of S.
⇒. Let S = ModL({A}). Then M ∈ 1 − S ⇐⇒ M |= ¬A, hence

1 − S = ModL({¬A}).
⇐. Let S = ModL(Γ1) and 1 − S = ModL(Γ2). Then Γ1 ∪ Γ2 is not

satisfiable, hence there is a finite Γ ⊆ Γ1 such that Γ ∪ Γ2 is not satisfiable.
One obtains

M ∈ S ⇒ M |= Γ ⇒ M 6|= Γ2 ⇒ M /∈ 1 − S ⇒ M ∈ S,

hence S = ModL(Γ).
(b). Let ModL(Γ) = ModL({A}). Then Γ |= A, hence also Γ0 |= A for a

finite Γ0 ⊆ Γ. One obtains

M |= Γ ⇒ M |= Γ0 ⇒ M |= A ⇒ M |= Γ,

hence ModL(Γ0) = ModL(Γ). ¤

6.8. Complete Linear Orders Without End Points. Finally we
consider as an example of a complete theory the theory DO of complete
linear orders without end points. The axioms are (the equality axioms and)

x 6< x,

x < y → y < z → x < z,

x < y ∨cl x = y ∨cl y < x,

x < y → ∃clz.x < z ∧ z < y,

∃cly x < y,

∃cly y < x.

Lemma. Every countable model of DO is isomorphic to the structure
(Q, <) of rational numbers.

Proof. Let M = (M,≺) be a countable model of DO; we can assume
that =M is the equality on M . Let M = { bn | n ∈ N } and Q = { an | n ∈
N }, where we may assume an 6= am and bn 6= bm for n < m. We define
recursively functions fn ⊆ Q × M as follows. Let f0 := {(a0, b0)}. Assume
we have already constructed fn.

Case n+1 = 2m. Let j be minimal such that bj /∈ ran(fn). Choose ai /∈
dom(fn) such that for all a ∈ dom(fn) we have ai < a ↔ bj < fn(a); such an
ai exists, since M and (Q, <) are models of DO. Let fn+1 := fn ∪{(ai, bj)}.

Case n + 1 = 2m + 1. This is treated similarly. Let i be minimal such
that ai /∈ dom(fn). Choose bj /∈ ran(fn) such that for all a ∈ dom(fn) we

54 2. MODELS

have ai < a ↔ bj < fn(a); such a bj exists, since M and (Q, <) are models
of DO. Let fn+1 := fn ∪ {(ai, bj)}.

Then {b0, . . . , bm} ⊆ ran(f2m) and {a0, . . . , am+1} ⊆ dom(f2m+1) by
construction, and f :=

⋃

n fn is an isomorphism of (Q, <) onto M. ¤

Theorem. The theory DO is complete, and DO = Th(Q, <).

Proof. Clearly (Q, <) is a model of DO. Hence by 6.3 it suffices to
show that for every model M of DO we have M ≡ (Q, <). So let M model
of DO. By 6.3 there is a countable M′ such that M ≡ M′. By the preceding
lemma M′ ∼= (Q, <), hence M ≡ M′ ≡ (Q, <). ¤

A further example of a complete theory is the theory of algebraically
closed fields. For a proof of this fact and for many more subjects of model
theory we refer to the literature (e.g., the book of Chang and Keisler [6]).

7. Notes

The completeness theorem for classical logic has been proved by Gödel
[10] in 1930. He did it for countable languages; the general case has been
treated 1936 by Malzew [17]. Löwenheim and Skolem proved their theorem
even before the completeness theorem was discovered: Löwenheim in 1915
[16] und Skolem in 1920 [24].

Beth-structures for intuitionistic logic have been introduced by Beth
in 1956 [1]; however, the completeness proofs given there were in need of
correction. 1959 Beth revised his paper in [2].

CHAPTER 3

Computability

In this chapter we develop the basics of recursive function theory, or as
it is more generally known, computability theory. Its history goes back to
the seminal works of Turing, Kleene and others in the 1930’s.

A computable function is one defined by a program whose operational
semantics tell an idealized computer what to do to its storage locations as
it proceeds deterministically from input to output, without any prior re-
strictions on storage space or computation time. We shall be concerned
with various program-styles and the relationships between them, but the
emphasis throughout will be on one underlying data-type, namely the nat-
ural numbers, since it is there that the most basic foundational connections
between proof theory and computation are to be seen in their clearest light.

The two best-known models of machine computation are the Turing
Machine and the (Unlimited) Register Machine of Shepherdson and Sturgis
[22]. We base our development on the latter since it affords the quickest
route to the results we want to establish.

1. Register Machines

1.1. Programs. A register machine stores natural numbers in registers
denoted u, v, w, x, y, z possibly with subscripts, and it responds step by
step to a program consisting of an ordered list of basic instructions:

I0

I1
...
Ik−1

Each instruction has one of the following three forms whose meanings are
obvious:

Zero: x := 0
Succ: x := x + 1

Jump: if x = y then Im else In .

The instructions are obeyed in order starting with I0 except when a condi-
tional jump instruction is encountered, in which case the next instruction
will be either Im or In according as the numerical contents of registers x
and y are equal or not at that stage. The computation terminates when it
runs out of instructions, that is when the next instruction called for is Ik.
Thus if a program of length k contains a jump instruction as above then it
must satisfy the condition m, n ≤ k and Ik means “halt”. Notice of course
that some programs do not terminate, for example the following one-liner:

if x = x then I0 else I1

55

56 3. COMPUTABILITY

1.2. Program Constructs. We develop some shorthand for building
up standard sorts of programs.

Transfer. “x := y” is the program

x := 0
if x = y then I4 else I2

x := x + 1
if x = x then I1 else I1

which copies the contents of register y into register x.
Predecessor. The program “x := y −· 1” copies the modified predecessor

of y into x, and simultaneously copies y into z:

x := 0
z := 0
if x = y then I8 else I3

z := z + 1
if z = y then I8 else I5

z := z + 1
x := x + 1
if z = y then I8 else I5 .

Composition. “P ; Q” is the program obtained by concatenating pro-
gram P with program Q. However in order to ensure that jump instructions
in Q of the form “if x = y then Im else In” still operate properly within Q
they need to be re-numbered by changing the addresses m, n to k +m, k +n
respectively where k is the length of program P . Thus the effect of this
program is to do P until it halts (if ever) and then do Q.

Conditional. “if x = y then P else Q fi” is the program

if x = y then I1 else Ik+2
...P
if x = x then Ik+2+l else I2
...Q

where k, l are the lengths of the programs P, Q respectively, and again their
jump instructions must be appropriately renumbered by adding 1 to the
addresses in P and k + 2 to the addresses in Q. Clearly if x = y then
program P is obeyed and the next jump instruction automatically bipasses
Q and halts. If x 6= y then program Q is performed.

For Loop. “for i = 1 . . . x do P od” is the program

i := 0
if x = i then Ik+4 else I2

i := i + 1
... P
if x = i then Ik+4 else I2

where again, k is the length of program P and the jump instructions in
P must be appropriately re-addressed by adding 3. The intention of this
new program is that it should iterate the program P x times (do nothing
if x = 0). This requires the restriction that the register x and the “local”
counting-register i are not re-assigned new values inside P .

1. REGISTER MACHINES 57

While Loop. “while x 6= 0 do P od” is the program

if x = 0 then Ik+2 else I1
...P
if x = 0 then Ik+2 else I1

where again, k is the length of program P and the jump instructions in P
must be re-addressed by adding 1. This program keeps on doing P until (if
ever) the register x becomes 0.

1.3. Computable Functions. A register machine program P may
have certain distinguished “input registers” and “output registers”. It may
also use other “working registers” for scratchwork and these will initially be
set to zero. We write P (x1, . . . , xk; y) to signify that program P has input
registers x1, . . . , xk and one output register y, which are distinct.

Definition. The program P (x1, . . . , xk; y) is said to compute the k-ary
partial function ϕ : Nk → N if, starting with any numerical values n1, . . . , nk

in the input registers, the program terminates with the number m in the
output register if and only if ϕ(n1, . . . , nk) is defined with value m. In this
case, the input registers hold their original values.

A function is register machine computable if there is some program which
computes it.

Here are some examples.
Addition. “Add(x, y; z)” is the program

z := x ; for i = 1, . . . , y do z := z + 1 od

which adds the contents of registers x and y into register z.
Subtraction. “Subt(x, y; z)” is the program

z := x ; for i = 1, . . . , y do w := z −· 1 ; z := w od

which computes the modified subtraction function x −· y.
Bounded Sum. If P (x1, . . . , xk, w; y) computes the k + 1-ary function ϕ

then the program Q(x1, . . . , xk, z; x):

x := 0 ;

for i = 1, . . . , z do w := i −· 1 ; P (~x, w; y) ; v := x ; Add(v, y; x) od

computes the function

ψ(x1, . . . , xk, z) =
∑

w<z

ϕ(x1, . . . , xk, w)

which will be undefined if for some w < z, ϕ(x1, . . . , xk, w) is undefined.
Multiplication. Deleting “w := i−· 1 ; P” from the last example gives a

program Mult(z, y; x) which places the product of y and z into x.
Bounded Product. If in the bounded sum example, the instruction x :=

x + 1 is inserted immediately after x := 0, and if Add(v, y; x) is replaced by
Mult(v, y; x), then the resulting program computes the function

ψ(x1, . . . , xk, z) =
∏

w<z

ϕ(x1, . . . , xk, w) .

58 3. COMPUTABILITY

Composition. If Pj(x1, . . . , xk; yj) computes ϕj for each j = i, . . . , m and
if P0(y1, . . . , ym; y0) computes ϕ0, then the program Q(x1, . . . , xk; y0):

P1(x1, . . . , xk; y1) ; . . . ; Pm(x1, . . . , xk; ym) ; P0(y1, . . . , ym; y0)

computes the function

ψ(x1, . . . , xk) = ϕ0(ϕ1(x1, . . . , xk) , . . . , ϕm(x1, . . . , xk))

which will be undefined if any of the ϕ-subterms on the right hand side is
undefined.

Unbounded Minimization. If P (x1, . . . , xk, y; z) computes ϕ then the pro-
gram Q(x1, . . . , xk; z):

y := 0 ; z := 0 ; z := z + 1 ;

while z 6= 0 do P (x1, . . . , xk, y; z) ; y := y + 1 od ;

z := y −· 1

computes the function

ψ(x1, . . . , xk) = µy (ϕ(x1, . . . , xk, y) = 0)

that is, the least number y such that ϕ(x1, . . . , xk, y
′) is defined for every

y′ ≤ y and ϕ(x1, . . . , xk, y) = 0.

2. Elementary Functions

2.1. Definition and Simple Properties. The elementary functions
of Kalmár (1943) are those number-theoretic functions which can be defined
explicitly by compositional terms built up from variables and the constants
0, 1 by repeated applications of addition +, modified subtraction −· , bounded
sums and bounded products.

By omitting bounded products, one obtains the subelementary functions.
The examples in the previous section show that all elementary functions

are computable and totally defined. Multiplication and exponentiation are
elementary since

m · n =
∑

i<n

m and mn =
∏

i<n

m

and hence by repeated composition, all exponential polynomials are elemen-
tary.

In addition the elementary functions are closed under
Definitions by Cases.

f(~n) =

{

g0(~n) if h(~n) = 0

g1(~n) otherwise

since f can be defined from g0, g1 and h by

f(~n) = g0(~n) · (1 −· h(~n)) + g1(~n) · (1 −· (1 −· h(~n))).

2. ELEMENTARY FUNCTIONS 59

Bounded Minimization.

f(~n, m) = µk<m (g(~n, k) = 0)

since f can be defined from g by

f(~n, m) =
∑

i<m

(
1 −·

∑

k≤i

(1 −· g(~n, k))
)
.

Note: this definition gives value m if there is no k < m such that g(~n, k) =
0. It shows that not only the elementary, but in fact the subelementary
functions are closed under bounded minimization. Furthermore, we define
µk≤m (g(~n, k) = 0) as µk<m+1 (g(~n, k) = 0). Another notational conven-
tion will be that we shall often replace the brackets in µk<m (g(~n, k) = 0)
by a dot, thus: µk<m. g(~n, k) = 0.

Lemma.

(a) For every elementary function f : Nr → N there is a number k such that
for all ~n = n1, . . . , nr,

f(~n) < 2k max(~n)

where 20(m) = m and 2k+1(m) = 22k(m).
(b) Hence the function n 7→ 2n(1) is not elementary.

Proof. (a). By induction on the build-up of the compositional term
defining f . The result clearly holds if f is any one of the base functions:

f(~n) = 0 or 1 or ni or ni + nj or ni −· nj .

If f is defined from g by application of bounded sum or product:

f(~n, m) =
∑

i<m

g(~n, i) or
∏

i<m

g(~n, i)

where g(~n, i) < 2k max(~n, i) then we have

f(~n, m) ≤ 2k max(~n, m)m < 2k+2 max(~n, m)

(using mm < 22m
). If f is defined from g0, g1, . . . , gl by composition:

f(~n) = g0(g1(~n), . . . , gl(~n))

where for each j ≤ l we have gj(−) < 2kj
(max(−)), then with k = maxj kj ,

f(~n) < 2k(2k max(~n)) = 22k max(~n)

and this completes the first part.
(b). If 2n(1) were an elementary function of n then by (a) there would

be a positive k such that for all n,

2n(1) < 2k(n)

but then putting n = 2k(1) yields 22k(1)(1) < 22k(1), a contradiction. ¤

60 3. COMPUTABILITY

2.2. Elementary Relations. A relation R on Nk is said to be elemen-
tary if its characteristic function

cR(~n) =

{

1 if R(~n)

0 otherwise

is elementary. In particular, the “equality” and “less than” relations are
elementary since their characteristic functions can be defined as follows:

c<(m, n) = 1 −· (1 −· (n −· m)) ; c=(m, n) = 1 −· (c<(m, n) + c<(n, m))) .

Furthermore if R is elementary then so is the function

f(~n, m) = µk<mR(~n, k)

since R(~n, k) is equivalent to 1 −· cR(~n, k) = 0.

Lemma. The elementary relations are closed under applications of propo-
sitional connectives and bounded quantifiers.

Proof. For example, the characteristic function of ¬R is

1 −· cR(~n) .

The characteristic function of R0 ∧ R1 is

cR0
(~n) · cR1

(~n).

The characteristic function of ∀i<mR(~n, i) is

c=(m, µi<m. cR(~n, i) = 0).

¤

Examples. The above closure properties enable us to show that many
“natural” functions and relations of number theory are elementary; thus

bm

n
c = µk<m (m < (k + 1)n)

m mod n = m −· bm

n
cn

Prime(m) ↔ 1 < m ∧ ¬∃n<m(1 < n ∧ m mod n = 0)

pn = µm<22n (
Prime(m) ∧ n =

∑

i<m

cPrime(i)
)

so p0, p1, p2, . . . gives the enumeration of primes in increasing order. The
estimate pn ≤ 22n

for the nth prime pn can be proved by induction on n:
For n = 0 this is clear, and for n ≥ 1 we obtain

pn ≤ p0p1 · · · pn−1 + 1 ≤ 220

221 · · · 22n−1

+ 1 = 22n−1 + 1 < 22n

.

2.3. The Class E.

Definition. The class E consists of those number theoretic functions
which can be defined from the initial functions: constant 0, successor S,
projections (onto the ith coordinate), addition +, modified subtraction −· ,
multiplication · and exponentiation 2x, by applications of composition and
bounded minimization.

2. ELEMENTARY FUNCTIONS 61

The remarks above show immediately that the characteristic functions
of the equality and less than relations lie in E , and that (by the proof of the
lemma) the relations in E are closed under propositional connectives and
bounded quantifiers.

Furthermore the above examples show that all the functions in the class
E are elementary. We now prove the converse, which will be useful later.

Lemma. There are “pairing functions” π, π1, π2 in E with the following
properties:

(a) π maps N × N bijectively onto N,
(b) π(a, b) < (a + b + 1)2,
(c) π1(c), π2(c) ≤ c,
(d) π(π1(c), π2(c)) = c,
(e) π1(π(a, b)) = a,
(f) π2(π(a, b)) = b.

Proof. Enumerate the pairs of natural numbers as follows:

...

10

6 . . .

3 7 . . .

1 4 8 . . .

0 2 5 9 . . .

At position (0, b) we clearly have the sum of the lengths of the preceeding
diagonals, and on the next diagonal a + b remains constant. Let π(a, b) be
the number written at position (a, b). Then we have

π(a, b) =
(∑

i≤a+b

i
)

+ a =
1

2
(a + b)(a + b + 1) + a.

Clearly π : N × N → N is bijective. Moreover, a, b ≤ π(a, b) and in case
π(a, b) 6= 0 also a < π(a, b). Let

π1(c) := µx≤c∃y≤c (π(x, y) = c),

π2(c) := µy≤c∃x≤c (π(x, y) = c).

Then clearly πi(c) ≤ c for i ∈ {1, 2} and

π1(π(a, b)) = a,

π2(π(a, b)) = b,

π(π1(c), π2(c)) = c.

π, π1 and π2 are elementary by definiton. ¤

Remark. The above proof shows that π, π1 and π2 are in fact subele-
mentary.

Lemma (Gödel). There is in E a function β with the following property:
For every sequence a0, . . . , an−1 < b of numbers less than b we can find a

number c ≤ 4 · 4n(b+n+1)4 such that β(c, i) = ai for all i < n.

62 3. COMPUTABILITY

Proof. Let

a := π(b, n) and d :=
∏

i<n

(
1 + π(ai, i)a!

)
.

From a! and d we can, for each given i < n, reconstruct the number ai as
the unique x < b such that

1 + π(x, i)a! | d.

For clearly ai is such an x, and if some x < b were to satisfy the same
condition, then because π(x, i) < a and the numbers 1 + ka! are relatively
prime for k ≤ a, we would have π(x, i) = π(aj , j) for some j < n. Hence
x = aj and i = j, thus x = ai.

We can now define the Gödel β-function as

β(c, i) := π1

(
µy<c. (1 + π(π1(y), i) · π1(c)) · π2(y) = π2(c)

)
.

Clearly β is in E . Furthermore with c := π(a!, d) we see that π(ai, dd/1 +
π(ai, i)a!e) is the unique such y, and therefore β(c, i) = ai. It is then not
difficult to estimate the given bound on c, using π(b, n) < (b + n + 1)2. ¤

Remark. The above definition of β shows that it is subelementary.

2.4. Closure Properties of E.

Theorem. The class E is closed under limited recursion. Thus if g, h, k
are given functions in E and f is defined from them according to the scheme

f(~m, 0) = g(~m)

f(~m, n + 1) = h(n, f(~m, n), ~m)

f(~m, n) ≤ k(~m, n)

then f is in E also.

Proof. Let f be defined from g, h and k in E , by limited recursion
as above. Using Gödel’s β-function as in the last lemma we can find for
any given ~m, n a number c such that β(c, i) = f(~m, i) for all i ≤ n. Let
R(~m, n, c) be the relation

β(c, 0) = g(~m) ∧ ∀i<n. β(c, i + 1) = h(i, β(c, i), ~m)

and note by the remarks above that its characteristic function is in E . It
is clear, by induction, that if R(~m, n, c) holds then β(c, i) = f(~m, i), for all
i ≤ n. Therefore we can define f explicitly by the equation

f(~m, n) = β(µc R(~m, n, c), n).

f will lie in E if µc can be bounded by an E function. However, Lemma 2.3

gives a bound 4 · 4(n+1)(b+n+2)4 , where in this case b can be taken as the
maximum of k(~m, i) for i ≤ n. But this can be defined in E as k(~m, i0),
where i0 = µi≤n. ∀j≤n. k(~m, j) ≤ k(~m, i). Hence µc can be bounded by an
E function. ¤

Remark. Notice that it is in this proof only that the exponential func-
tion is required, in providing a bound for µ.

Corollary. E is the class of all elementary functions.

2. ELEMENTARY FUNCTIONS 63

Proof. It is sufficient merely to show that E is closed under bounded
sums and bounded products. Suppose for instance, that f is defined from
g in E by bounded summation: f(~m, n) =

∑

i<n g(~m, i). Then f can be
defined by limited recursion, as follows

f(~m, 0) = 0

f(~m, n + 1) = f(~m, n) + g(~m, n)

f(~m, n) ≤ n · max
i<n

g(~m, i)

and the functions (including the bound) from which it is defined are in E .
Thus f is in E by the last lemma. If instead, f is defined by bounded
product, then proceed similarly. ¤

2.5. Coding Finite Lists. Computation on lists is a practical neces-
sity, so because we are basing everything here on the single data type N
we must develop some means of “coding” finite lists or sequences of natural
numbers into N itself. There are various ways to do this and we shall adopt
one of the most traditional, based on the pairing functions π, π1, π2.

The empty sequence is coded by the number 0 and a sequence n0, n1,
. . . , nk−1 is coded by the “sequence number”

〈n0, n1, . . . , nk−1〉 = π′(. . . π′(π′(0, n0), n1), . . . , nk−1)

with π′(a, b) := π(a, b) + 1, thus recursively,

〈〉 := 0,

〈n0, n1, . . . , nk〉 := π′(〈n0, n1, . . . , nk−1〉, nk).

Because of the surjectivity of π, every number a can be decoded uniquely as
a sequence number a = 〈n0, n1, . . . , nk−1〉. If a is greater than zero, hd(a) :=
π2(a−· 1) is the “head” (i.e. rightmost element) and tl(a) := π1(a−· 1) is the

“tail” of the list. The kth iterate of tl is denoted tl(k) and since tl(a) is less

than or equal to a, tl(k)(a) is elementarily definable (by limited recursion).
Thus we can define elementarily the “length” and “decoding” functions:

lh(a) := µk≤a. tl(k)(a) = 0,

(a)i := hd(tl(lh(a)−· (i+1))(a)).

Then if a = 〈n0, n1, . . . , nk−1〉 it is easy to check that

lh(a) = k and (a)i = ni for each i < k.

Furthermore (a)i = 0 when i ≥ lh(a). We shall write (a)i,j for ((a)i)j and
(a)i,j,k for (((a)i)j)k. This elementary coding machinery will be used at
various crucial points in the following.

Note that our previous remarks show that the functions lh and (a)i are
subelementary, and so is 〈n0, n1, . . . , nk−1〉 for each fixed k .

Concatenation of sequence numbers b ? a is defined thus:

b ? 〈〉 := b,

b ? 〈n0, n1, . . . , nk〉 := π(b ? 〈n0, n1, . . . , nk−1〉, nk) + 1.

64 3. COMPUTABILITY

To check that this operation is also elementary, define h(b, a, i) by recursion
on i as follows.

h(b, a, 0) = b,

h(b, a, i + 1) = π(h(b, a, i), (a)i) + 1

and note that since π(h(b, a, i), (a)i) < (h(b, a, i)+a)2 it follows by induction

on i that h(b, a, i) is less than or equal to (b+a+ i)2
i
. Thus h is definable by

limited recursion from elementary functions and hence is itself elementary.
Finally

b ? a = h(b, a, lh(a)).

Lemma. The class E is closed under limited course-of-values recursion.
Thus if h, k are given functions in E and f is defined from them according
to the scheme

f(~m, n) = h(n, 〈f(~m, 0),f(~m, n − 1)〉, ~m)

f(~m, n) ≤ k(~m, n)

then f is in E also.

Proof. f̄(~m, n) := 〈f(~m, 0),f(~m, n − 1)〉 is definable by

f̄(~m, 0) = 0,

f̄(~m, n + 1) = f̄(~m, n) ? 〈h(n, f̄(~m, n), ~m)〉

f̄(~m, n) ≤
(∑

i≤n

k(~m, i) + 1
)2n

, using 〈n, . . . , n
︸ ︷︷ ︸

k

〉 < (n + 1)2
k

¤

3. The Normal Form Theorem

3.1. Program Numbers. The three types of register machine instruc-
tions I can be coded by “instruction numbers”]I thus, where v0, v1, v2, . . .
is a list of all variables used to denote registers:

If I is “vj := 0” then]I = 〈0, j〉.
If I is “vj := vj + 1” then]I = 〈1, j〉.
If I is “if vj = vl then Im else In” then]I = 〈2, j, l, m, n〉.

Clearly, using the sequence coding and decoding apparatus above, we can
check elementarily whether or not a given number is an instruction number.

Any register machine program P = I0, I1, . . . , Ik−1 can then be coded
by a “program number” or “index”]P thus:

]P = 〈]I0,]I1, . . . ,]Ik−1 〉
and again (although it is tedious) we can elementarily check whether or not
a given number is indeed of the form]P for some program P . Tradition has
it that e is normally reserved as a variable over putative program numbers.

Standard program constructs such as those in Section 1 have associated
“index-constructors”, i.e. functions which, given indices of the subprograms,
produce an index for the constructed program. The point is that for stan-
dard program constructs the associated index-constructor functions are el-
ementary. For example there is an elementary index-constructor comp such

3. THE NORMAL FORM THEOREM 65

that, given programs P0, P1 with indices e0, e1, comp(e0, e1) is an index of
the program P0 ; P1. A moment’s thought should convince the reader that
the appropriate definition of comp is as follows:

comp(e0, e1) = e0 ? 〈r(e0, e1, 0), r(e0, e1, 1), . . . , r(e0, e1, lh(e1) −· 1)〉
where r(e0, e1, i) =

{

〈2, (e1)i,1, (e1)i,2, (e1)i,3 + lh(e0), (e1)i,4 + lh(e0)〉 if (e1)i,0 = 2

(e1)i otherwise

re-addresses the jump instructions in P1. Clearly r and hence comp are
elementary functions.

Definition. Henceforth, ϕ
(r)
e denotes the partial function computed by

the register machine program with program number e, operating on the
input registers v1, . . . , vr and with output register v0. There is no loss of
generality here, since the variables in any program can always be renamed
so that v1, . . . , vr become the input registers and v0 the output. If e is not a
program number, or it is but does not operate on the right variables, then

we adopt the convention that ϕ
(r)
e (n1, . . . , nr) is undefined for all inputs

n1, . . . , nr.

3.2. Normal Form.

Theorem (Kleene’s Normal Form). For each arity r there is an ele-
mentary function U and an elementary relation T such that, for all e and
all inputs n1, . . . , nr,

• ϕ
(r)
e (n1, . . . , nr) is defined ⇐⇒ ∃s T (e, n1, . . . , nr, s)

• ϕ
(r)
e (n1, . . . , nr) = U(e, n1, . . . , nr, µ s T (e, n1, . . . , nr, s)).

Proof. A computation of a register machine program P (v1, . . . , vr; v0)
on numerical inputs ~n = n1, . . . , nr proceeds deterministically, step by step,
each step corresponding to the execution of one instruction. Let e be its
program number, and let v0, . . . , vl be all the registers used by P , including
the “working registers” so r ≤ l.

The “state” of the computation at step s is defined to be the sequence
number

state(e, ~n, s) = 〈e, i, m0, m1, . . . , ml〉
where m0, m1, . . . , ml are the values stored in the registers v0, v1, . . . , vl after
step s is completed, and the next instruction to be performed is the ith one,
thus (e)i is its instruction number.

The “state transition function” tr : N → N computes the “next state”.
So suppose that x = 〈e, i, m0, m1, . . . , ml〉 is any putative state. Then in
what follows, e = (x)0, i = (x)1, and mj = (x)j+2 for each j ≤ l. The
definition of tr(x) is therefore as follows:

tr(x) = 〈e, i′, m′
0, m

′
1, . . . , m

′
l〉

where

• If (e)i = 〈0, j〉 where j ≤ l then i′ = i + 1, m′
j = 0, and all other

registers remain unchanged, i.e. m′
k = mk for k 6= j.

66 3. COMPUTABILITY

• If (e)i = 〈1, j〉 where j ≤ l then i′ = i + 1, m′
j = mj + 1, and all

other registers remain unchanged.
• If (e)i = 〈2, j0, j1, i0, i1〉 where j0, j1 ≤ l and i0, i1 ≤ lh(e) then

i′ = i0 or i′ = i1 according as mj0 = mj1 or not, and all registers
remain unchanged, i.e. m′

j = mj for all j ≤ l.
• Otherwise, if x is not a sequence number, or if e is not a program

number, or if it refers to a register vk with l < k, or if lh(e) ≤ i,
then tr(x) simply repeats the same state x so i′ = i, and m′

j = mj

for every j ≤ l.

Clearly tr is an elementary function, since it is defined by elementarily decid-
able cases, with (a great deal of) elementary decoding and re-coding involved
in each case.

Consequently, the “state function” state(e, ~n, s) is also elementary be-
cause it can be defined by iterating the transition function by limited recur-
sion on s as follows:

state(e, ~n, 0) = 〈e, 0, n1, . . . , nr, 0, . . . , 0〉
state(e, ~n, s + 1) = tr(state(e, ~n, s))

state(e, ~n, s) ≤ h(e, ~n, s)

where for the bounding function h we can take

h(e, ~n, s) = 〈e, e〉 ? 〈max(~n) + s, . . . ,max(~n) + s〉,
This is because the maximum value of any register at step s cannot be
greater than max(~n) + s. Now this expression clearly is elementary, since
〈m, . . . , m〉 with i occurrences of m is definable by a limited recursion with

bound (m + i)2
i
, as is easily seen by induction on i.

Now recall that if program P has program number e then computation
terminates when instruction Ilh(e) is encountered. Thus we can define the
“termination relation” T (e, ~n, s) meaning “computation terminates at step
s”, by

T (e, ~n, s) ⇐⇒ (state(e, ~n, s))1 = lh(e).

Clearly T is elementary and

ϕ(r)
e (~n) is defined ⇐⇒ ∃s T (e, ~n, s).

The output on termination is the value of register v0, so if we define the
“output function” U(e, ~n, s) by

U(e, ~n, s) = (state(e, ~n, s))2

then U is also elementary and

ϕ(r)
e (~n) = U(e, ~n, µs T (e, ~n, s)).

This completes the proof. ¤

3.3. Σ0
1-Definable Relations and µ-Recursive Functions. A rela-

tion R of arity r is said to be Σ0
1-definable if there is an elementary relation

E, say of arity r + l, such that for all ~n = n1, . . . , nr,

R(~n) ⇐⇒ ∃k1 . . .∃kl E(~n, k1, . . . , kl).

3. THE NORMAL FORM THEOREM 67

A partial function ϕ is said to be Σ0
1-definable if its graph

{ (~n, m) | ϕ(~n) is defined and = m }
is Σ0

1-definable.
To say that a non-empty relation R is Σ0

1-definable is equivalent to saying
that the set of all sequences 〈~n〉 satisfying R can be enumerated (possibly
with repetitions) by some elementary function f : N → N. Such relations are
called elementarily enumerable. For choose any fixed sequence 〈a1, . . . , ar〉
satisfying R and define

f(m) =

{

〈(m)1, . . . , (m)r〉 if E((m)1, . . . , (m)r+l)

〈a1, . . . , ar〉 otherwise.

Conversely if R is elementarily enumerated by f then

R(~n) ⇐⇒ ∃m (f(m) = 〈~n〉)
is a Σ0

1-definition of R.
The µ-recursive functions are those (partial) functions which can be

defined from the initial functions: constant 0, successor S, projections (onto
the ith coordinate), addition +, modified subtraction −· and multiplication
·, by applications of composition and unbounded minimization. Note that
it is through unbounded minimization that partial functions may arise.

Lemma. Every elementary function is µ-recursive.

Proof. By simply removing the bounds on µ in the lemmas in 2.3
one obtains µ-recursive definitions of the pairing functions π, π1, π2 and of
Gödel’s β-function. Then by removing all mention of bounds from Theorem
in 2.4 one sees that the µ-recursive functions are closed under (unlimited)
primitive recursive definitions: f(~m, 0) = g(~m), f(~m, n+1) = h(n, f(~m, n)).
Thus one can µ-recursively define bounded sums and bounded products, and
hence all elementary functions. ¤

3.4. Computable Functions.

Definition. The while-programs are those programs which can be built
up from assignment statements x := 0, x := y, x := y + 1, x := y −· 1, by
Conditionals, Composition, For-Loops and While-Loops as in the subsection
on program constructs in Section 1.

Theorem. The following are equivalent:

(a) ϕ is register machine computable,
(b) ϕ is Σ0

1-definable,
(c) ϕ is µ-recursive,
(d) ϕ is computable by a while program.

Proof. The Normal Form Theorem shows immediately that every re-

gister machine computable function ϕ
(r)
e is Σ0

1-definable since

ϕ(r)
e (~n) = m ⇐⇒ ∃s.T (e, ~n, s) ∧ U(e, ~n, s) = m

and the relation T (e, ~n, s) ∧ U(e, ~n, s) = m is clearly elementary. If ϕ is
Σ0

1-definable, say

ϕ(~n) = m ⇐⇒ ∃k1 . . .∃kl E(~n, m, k1, . . . , kl)

68 3. COMPUTABILITY

then ϕ can be defined µ-recursively by

ϕ(~n) = (µmE(~n, (m)0, (m)1, . . . , (m)l))0 ,

using the fact (above) that elementary functions are µ-recursive. The exam-
ples of computable functionals in Section 1 show how the definition of any
µ-recursive function translates automatically into a while program. Finally,
the subsection on program constructs in Section 1 shows how to implement
any while program on a register machine. ¤

Henceforth computable means “register machine computable” or any of
its equivalents.

Corollary. The function ϕ
(r)
e (n1, . . . , nr) is a computable partial func-

tion of the r + 1 variables e, n1, . . . , nr.

Proof. Immediate from the Normal Form. ¤

Lemma. A relation R is computable if and only if both R and its com-
plement Nn \ R are Σ0

1-definable.

Proof. We can assume that both R and Nn \R are not empty, and (for
simplicity) also n = 1.

⇒. By the theorem above every computable relation is Σ0
1-definable,

and with R clearly its complement is computable.
⇐. Let f, g ∈ E enumerate R and N \ R, respectively. Then

h(n) := µi.f(i) = n ∨ g(i) = n

is a total µ-recursive function, and R(n) ↔ f(h(n)) = n. ¤

3.5. Undecidability of the Halting Problem. The above corollary
says that there is a single “universal” program which, given numbers e and

~n, computes ϕ
(r)
e (~n) if it is defined. However we cannot decide in advance

whether or not it will be defined. There is no program which, given e and
~n, computes the total function

h(e, ~n) =

{

1 if ϕ
(r)
e (~n) is defined,

0 if ϕ
(r)
e (~n) is undefined.

For suppose there were such a program. Then the function

ψ(~n) = µm (h(n1, ~n) = 0)

would be computable, say with fixed program number e0, and therefore

ϕ(r)
e0

(~n) =

{

0 if h(n1, ~n) = 0

undefined if h(n1, ~n) = 1

But then fixing n1 = e0 gives:

ϕ
(r)
e0

(~n) defined ⇐⇒ h(e0, ~n) = 0 ⇐⇒ ϕ
(r)
e0

(~n) undefined

a contradiction. Hence the relation R(e, ~n) which holds if and only if ϕ
(r)
e (~n)

is defined, is not recursive. It is however Σ0
1-definable.

There are numerous attempts to classify total computable functions ac-
cording to the complexity of their termination proofs.

4. RECURSIVE DEFINITIONS 69

4. Recursive Definitions

4.1. Least Fixed Points of Recursive Definitions. By a recursive
definition of a partial function ϕ of arity r from given partial functions
ψ1, . . . , ψm of fixed but unspecified arities, we mean a defining equation of
the form

ϕ(n1, . . . , nr) = t(ψ1, . . . , ψm, ϕ; n1, . . . , nr)

where t is any compositional term built up from the numerical variables
~n = n1, . . . , nr and the constant 0 by repeated applications of the successor
and predecessor functions, the given functions ψ1, . . . , ψm, the function ϕ
itself, and the “definition by cases” function :

dc(x, y, u, v) =

u if x, y are both defined and equal

v if x, y are both defined and unequal

undefined otherwise.

Our notion of recursive definition is essentially a reformulation of the Her-
brand-Gödel-Kleene equation calculus; see Kleene [15].

There may be many partial functions ϕ satisfying such a recursive def-
inition, but the one we wish to single out is the least defined one, i.e. the
one whose defined values arise inevitably by lazy evaluation of the term t
“from the outside in”, making only those function calls which are absolutely
necessary. This presupposes that each of the functions from which t is con-
structed already comes equipped with an evaluation strategy. In particular
if a subterm dc(t1, t2, t3, t4) is called then it is to be evaluated according to
the program construct:

x := t1 ; y := t2 ; if x := y then t3 else t4.

Some of the function calls demanded by the term t may be for further values
of ϕ itself, and these must be evaluated by repeated unravellings of t (in other
words by recursion).

This “least solution” ϕ will be referred to as the function defined by that
recursive definition or its least fixed point . Its existence and its computabil-
ity are guaranteed by Kleene’s Recursion Theorem below.

4.2. The Principles of Finite Support and Monotonicity, and

the Effective Index Property. Suppose we are given any fixed partial
functions ψ1, . . . , ψm and ψ, of the appropriate arities, and fixed inputs ~n.
If the term t = t(ψ1, . . . , ψm, ψ;~n) evaluates to a defined value k then the
following principles are required to hold:

Finite Support Principle. Only finitely many values of ψ1, . . . , ψm and
ψ are used in that evaluation of t.

Monotonicity Principle. The same value k will be obtained no matter
how the partial functions ψ1, . . . , ψm and ψ are extended.

Note also that any such term t satisfies the
Effective Index Property. There is an elementary function f such that if

ψ1, . . . , ψm and ψ are computable partial functions with program numbers
e1, . . . , em and e respectively, then according to the lazy evaluation strategy
just described,

t(ψ1, . . . , ψm, ψ;~n)

70 3. COMPUTABILITY

defines a computable function of ~n with program number f(e1, . . . , em, e).
The proof of the Effective Index Property is by induction over the build-

up of the term t. The base case is where t is just one of the constants 0, 1
or a variable nj , in which case it defines either a constant function ~n 7→ 0
or ~n 7→ 1, or a projection function ~n 7→ nj . Each of these is trivially
computable with a fixed program number, and it is this program number
we take as the value of f(e1, . . . , em, e). Since in this case f is a constant
function, it is clearly elementary. The induction step is where t is built up
by applying one of the given functions: successor, predecessor, definition by
cases or ψ (with or without a subscript) to previously constructed subterms
ti(ψ1, . . . , ψm, ψ;~n), i = 1 . . . l, thus:

t = ψ(t1, . . . , tl).

Inductively we can assume that for each i = 1 . . . l, ti defines a partial
function of ~n = n1, . . . , nr which is register machine computable by some
program Pi with program number given by an already-constructed elemen-
tary function fi = fi(e1, . . . , em, e). Therefore if ψ is computed by a program
Q with program number e, we can put P1, . . . , Pl and Q together to con-
struct a new program obeying the evaluation strategy for t. Furthermore,
by the remark on index-constructions near the beginning of Section 3, we
will be able to compute its program number f(e1, . . . , em, e) from the given
numbers f1, . . . , fl and e, by some elementary function.

4.3. Recursion Theorem.

Theorem (Kleene’s Recursion Theorem). For given partial functions
ψ1, . . . , ψm, every recursive definition

ϕ(~n) = t(ψ1, . . . , ψm, ϕ;~n)

has a least fixed point, i.e. a least defined solution, ϕ. Moreover if ψ1, . . . , ψm

are computable, so is the least fixed point ϕ.

Proof. Let ψ1, . . . , ψm be fixed partial functions of the appropriate
arities. Let Φ be the functional from partial functions of arity r to partial
functions of arity r defined by lazy evaluation of the term t as described
above:

Φ(ψ)(~n) = t(ψ1, . . . , ψm, ψ;~n).

Let ϕ0, ϕ1, ϕ2, . . . be the sequence of partial functions of arity r generated
by Φ thus: ϕ0 is the completely undefined function, and ϕi+1 = Φ(ϕi) for
each i. Then by induction on i, using the Monotonicity Principle above, we
see that each ϕi is a subfunction of ϕi+1. That is, whenever ϕi(~n) is defined
with a value k then ϕi+1(~n) is defined with that same value. Since their
defined values are consistent with one another we can therefore construct
the “union” ϕ of the ϕi’s as follows:

ϕ(~n) = k ⇐⇒ ∃i (ϕi(~n) = k).

(i) This ϕ is then the required least fixed point of the recursive definition.
To see that it is a fixed point, i.e. ϕ = Φ(ϕ), first suppose ϕ(~n) is defined

with value k. Then by the definition of ϕ just given, there is an i > 0 such
that ϕi(~n) is defined with value k. But ϕi = Φ(ϕi−1) so Φ(ϕi−1)(~n) is
defined with value k. Therefore by the Monotonicity Principle for Φ, since

4. RECURSIVE DEFINITIONS 71

ϕi−1 is a subfunction of ϕ, Φ(ϕ)(~n) is defined with value k. Hence ϕ is a
subfunction of Φ(ϕ).

It remains to show the converse, that Φ(ϕ) is a subfunction of ϕ. So sup-
pose Φ(ϕ)(~n) is defined with value k. Then by the Finite Support Principle,
only finitely many defined values of ϕ are called for in this evaluation. By
the definition of ϕ there must be some i such that ϕi already supplies all of
these required values, and so already at stage i we have Φ(ϕi)(~n) = ϕi+1(~n)
defined with value k. Since ϕi+1 is a subfunction of ϕ it follows that ϕ(~n)
is defined with value k. Hence Φ(ϕ) is a subfunction of ϕ.

To see that ϕ is the least such fixed point, suppose ϕ′ is any fixed point
of Φ. Then Φ(ϕ′) = ϕ′ so by the Monotonicity Principle, since ϕ0 is a
subfunction of ϕ′ it follows that Φ(ϕ0) = ϕ1 is a subfunction of Φ(ϕ′) = ϕ′.
Then again by Monotonicity, Φ(ϕ1) = ϕ2 is a subfunction of Φ(ϕ′) = ϕ′

etcetera so that for each i, ϕi is a subfunction of ϕ′. Since ϕ is the union of
the ϕi’s it follows that ϕ itself is a subfunction of ϕ′. Hence ϕ is the least
fixed point of Φ.

(ii) Finally we have to show that ϕ is computable if the given functions
ψ1, . . . , ψm are. For this we need the Effective Index Property of the term
t, which supplies an elementary function f such that if ψ is computable
with program number e then Φ(ψ) is computable with program number
f(e) = f(e1, . . . , em, e). Thus if u is any fixed program number for the
completely undefined function of arity r, f(u) is a program number for
ϕ1 = Φ(ϕ0), f2(u) = f(f(u)) is a program number for ϕ2 = Φ(ϕ1), and in
general f i(u) is a program number for ϕi. Therefore in the notation of the
Normal Form Theorem,

ϕi(~n) = ϕ
(r)

f i(u)
(~n)

and by the second corollary to the Normal Form Theorem, this is a com-
putable function of i and ~n, since f i(u) is a computable function of i defin-
able (informally) say by a for-loop of the form “for j = 1 . . . i do f od”.
Therefore by the earlier equivalences, ϕi(~n) is a Σ0

1-definable function of i
and ~n, and hence so is ϕ itself because

ϕ(~n) = m ⇐⇒ ∃i (ϕi(~n) = m) .

So ϕ is computable and this completes the proof. ¤

Note. The above proof works equally well if ϕ is a vector-valued func-
tion. In other words if, instead of defining a single partial function ϕ, the
recursive definition in fact defines a finite list ~ϕ of such functions simultane-
ously. For example, the individual components of the machine state of any
register machine at step s are clearly defined by a simultaneous recursive
definition, from zero and successor.

4.4. Recursive Programs and Partial Recursive Functions. A
recursive program is a finite sequence of possibly simultaneous recursive
definitions:

~ϕ0(n1, . . . , nr0
) = t0(~ϕ0; n1, . . . , nr0

)

~ϕ1(n1, . . . , nr1
) = t1(~ϕ0, ~ϕ1; n1, . . . , nr1

)

~ϕ2(n1, . . . , nr2
) = t2(~ϕ0, ~ϕ1, ~ϕ2; n1, . . . , nr2

)

72 3. COMPUTABILITY

...

~ϕk(n1, . . . , nrk
) = tk(~ϕ0, . . . , ~ϕk−1, ~ϕk; n1, . . . , nrk

).

A partial function is said to be partial recursive if it is one of the functions
defined by some recursive program as above. A partial recursive function
which happens to be totally defined is called simply a recursive function.

Theorem. A function is partial recursive if and only if it is computable.

Proof. The Recursion Theorem tells us immediately that every partial
recursive function is computable. For the converse we use the equivalence of
computability with µ-recursiveness already established in Section 3. Thus
we need only show how to translate any µ-recursive definition into a recursive
program:

The constant 0 function is defined by the recursive program

ϕ(~n) = 0

and similarly for the constant 1 function.
The addition function ϕ(m, n) = m + n is defined by the recursive pro-

gram
ϕ(m, n) = dc(n, 0, m, ϕ(m, n −· 1) + 1)

and the subtraction function ϕ(m, n) = m−· n is defined similarly but with
the successor function +1 replaced by the predecessor −· 1. Multiplication is
defined recursively from addition in much the same way. Note that in each
case the right hand side of the recursive definition is an allowed term.

The composition scheme is a recursive definition as it stands.
Finally, given a recursive program defining ψ, if we add to it the recursive

definition:
ϕ(~n, m) = dc(ψ(~n, m), 0, m, ϕ(~n, m + 1))

followed by
ϕ′(~n) = ϕ(~n, 0)

then the computation of ϕ′(~n) proceeds as follows:

ϕ′(~n) = ϕ(~n, 0)

= ϕ(~n, 1) if ψ(~n, 0) 6= 0

= ϕ(~n, 2) if ψ(~n, 1) 6= 0

...

= ϕ(~n, m) if ψ(~n, m − 1) 6= 0

= m if ψ(~n, m) = 0

Thus the recursive program for ϕ′ defines unbounded minimization:

ϕ′(~n) = µm (ψ(~n, m) = 0).

This completes the proof. ¤

CHAPTER 4

Gödel’s Theorems

1. Gödel Numbers

1.1. Coding Terms and Formulas. We use the elementary sequence-
coding and decoding machinery developed earlier. Let L be a countable first
order language. Assume that we have injectively assigned to every n-ary
relation symbol R a symbol number SN(R) of the form 〈1, n, i〉 and to every
n-ary function symbol f a symbol number SN(f) of the form 〈2, n, j〉. Call
L elementarily presented , if the set SymbL of all these symbol numbers is
elementary. In what follows we shall always assume that the languages L
considered are elementarily presented. In particular this applies to every
language with finitely many relation and function symbols.

Assign numbers to the logical symbols by SN(∧) := 〈3, 1〉, SN(→) :=
〈3, 2〉 und SN(∀) := 〈3, 3〉, and to the i-th variable assign the symbol number
〈0, i〉.

For every L-term t we define recursively its Gödel number ptq by

pxq := 〈SN(x)〉,
pcq := 〈SN(c)〉,
pft1 . . . tnq := 〈SN(f), pt1q, . . . , ptnq〉.

Similarly we recursively define for every L-formula A its Gödel number pAq

by

pRt1 . . . tnq := 〈SN(R), pt1q, . . . , ptnq〉,
pA ∧ Bq := 〈SN(∧), pAq, pBq〉,
pA → Bq := 〈SN(→), pAq, pBq〉,
p∀x Aq := 〈SN(∀), pxq, pAq〉.

Let Var := { 〈〈0, i〉〉 | i ∈ N }. Var clearly is elementary, and we have a ∈ Var

if and only if a = pxq for a variable x. We define Ter ⊆ N as follows, by
course-of-values recursion.

a ∈ Ter :↔
a ∈ Var ∨
((a)0 ∈ SymbL ∧ (a)0,0 = 2 ∧ lh(a) = (a)0,1 + 1 ∧ ∀i0<i<lh(a) (a)i ∈ Ter).

Ter is elementary, and it is easily seen that a ∈ Ter if and only if a = ptq for
some term t. Similarly For ⊆ N is defined by

a ∈ For :↔
((a)0 ∈ SymbL ∧ (a)0,0 = 1 ∧ lh(a) = (a)0,1 + 1 ∧ ∀i0<i<lh(a) (a)i ∈ Ter) ∨
(a = 〈SN(∧), (a)1, (a)2〉 ∧ (a)1 ∈ For ∧ (a)2 ∈ For) ∨

73

74 4. GÖDEL’S THEOREMS

(a = 〈SN(→), (a)1, (a)2〉 ∧ (a)1 ∈ For ∧ (a)2 ∈ For) ∨
(a = 〈SN(∀), (a)1, (a)2〉 ∧ (a)1 ∈ Var ∧ (a)2 ∈ For).

Again For is elementary, and we have a ∈ For if and only if a = pAq for
some formula A. For a set S of formulas let pSq := { pAq | A ∈ S }.

We could continue in this way and define Gödel numberings of various
other syntactical notions, but we are mainly concerned that the reader be-
lieves that it can be done rather than sees all the (gory) details. In particular
there are elementary functions msm and sub with the following properties:

• msm(pΓq, p∆q) codes the result of deleting from the multiset of
formulas Γ all the formulas which lie in ∆.

• sub(ptq, pϑq) = ptϑq, and sub(pAq, pϑq) = pAϑq, where ϑ is a sub-
stitution (i.e. a finite assignment of terms to variables) and tϑ and
Aϑ are the results of substituting those terms for those variables in
t or A respectively.

1.2. Sequents. In our previous exposition of natural deduction one can
find the assumptions free at a given node by inspecting the upper part of
the proof tree. An alternative is to write the free assumptions next to each
node, in the form of a multiset.

By a sequent Γ ⇒ A we mean a pair consisting of a multiset Γ =
{{A1, . . . , An}} of formulas and a single formula A. We define `m Γ ⇒ A
inductively by the following rules. An assumption can be introduced by

Γ ⇒ A if A in Γ.

For conjunction ∧ we have an introduction rule ∧I and two elimination rules
∧El und ∧Er.

Γ ⇒ A ∆ ⇒ B

Γ, ∆ ⇒ A ∧ B
∧I

Γ ⇒ A ∧ B

Γ ⇒ A
∧Er

Γ ⇒ A ∧ B

Γ ⇒ B
∧El

Here Γ, ∆ denotes multiset union. For implication → we have an introduc-
tion rule →I (not mentioning an assumption variable u) and an elimination
rule →E.

Γ ⇒ B

∆ ⇒ A → B
→I

Γ ⇒ A → B ∆ ⇒ A

Γ, ∆ ⇒ B
→E

In →I the multiset ∆ is obtained from Γ by cancelling some occurrences
of A. For the universal quantifier ∀ we have an introduction rule ∀I and
an elimination rule ∀E (formulated without the term t to be substituted as
additional premise)

Γ ⇒ A

Γ ⇒ ∀xA
∀I

Γ ⇒ ∀xA

Γ ⇒ A[x := t]
∀E

In ∀I the variable condition needs to hold: for all B in Γ we must have
x /∈ FV(B).

Lemma. (a) If `m {{A1, . . . , An}} ⇒ A, then for all (not necessarily dis-
tinct) u1, . . . , un such that ui = uj → Ai = Aj we can find a derivation

term MA[uA1

1 , . . . , uAn
n].

(b) For every derivation term MA[uA1

1 , . . . , uAn
n] one can find multiplicities

k1, . . . , kn ≥ 0 such that `m {{Ak1

1 , . . . , Akn
n }} ⇒ A; here Ak means a

k-fold occurrence of A.

1. GÖDEL NUMBERS 75

Proof. (a). Assume `m {{A1, . . . , An}} ⇒ A. We use induction on `m.
Case assumption. Let A = Ai. Take M = ui.

Case →I. We may assume

{{A1, . . . , An, A, . . . , A}} ⇒ B

{{A1, . . . , An}} ⇒ A → B
→I.

Let u1, . . . , un be given such that ui = uj → Ai = Aj . Pick a new as-
sumption variable u. By IH there exists an MB such that FA(MB) ⊆
{uA1

1 , . . . , uAn
n , uA}. Then (λuA MB)A→B is a derivation term with free as-

sumptions among uA1

1 , . . . , uAn
n .

Case →E. Assume we have derivations of

{{A1, . . . , An}} ⇒ A → B and {{An+1, . . . , An+m}} ⇒ A.

Let u1, . . . , un+m be given such that ui = uj → Ai = Aj . By IH we have
derivation terms

MA→B[uA1

1 , . . . , uAn
n] and NA[u

An+1

n+1 , . . . , u
An+m

n+m].

But then also
(MN)B[uA1

1 , . . . , u
An+m

n+m]

is a derivation term.
The other cases are treated similarly.
(b). Let a derivation term MA[uA1

1 , . . . , uAn
n] be given. We use induction

on M . Case uA. Then `m {{A}} ⇒ A.

Case →I, so (λuAMB)A→B. Let FA(MB) ⊆ {uA1

1 , . . . , uAn
n , uA} with

u1, . . . , un, u distinct. By IH we have

`m {{Ak1

1 , . . . , Akn
n , Ak}} ⇒ B.

Using the rule →I we obtain

`m {{Ak1

1 , . . . , Akn
n }} ⇒ A → B.

Case →E. We are given (MA→BNA)B[uA1

1 , . . . , uAn
n]. By IH we have

`m {{Ak1

1 , . . . , Akn
n }} ⇒ A → B and `m {{Al1

1 , . . . , Aln
n }} ⇒ A.

Using the rule →E we obtain

{{Ak1+l1
1 , . . . , Akn+ln

n }} ⇒ B.

The other cases are treated similarly. ¤

1.3. Coding Derivations. We can now define the set of Gödel num-
bers of formal proofs (in the above formulation of minimal logic), as follows.

Deriv(d) :↔ ∀i<lh(d).

(∀m<lh((d)i,0)For((d)i,0,m) ∧ ∃n<lh((d)i,0) ((d)i,1 = (d)i,0,n)) (A)

∨ (∃j, k<i.(d)i,1 = 〈SN(∧), (d)j,1, (d)k,1〉 ∧ (d)i,0 =m (d)j,0 ∗ (d)k,0) (∧I)

∨ (∃j<i.(d)j,1 = 〈SN(∧), (d)i,1, (d)j,1,2〉 ∧ (d)i,0 =m (d)j,0) (∧Er)

∨ (∃j<i.(d)j,1 = 〈SN(∧), (d)j,1,1, (d)i,1〉 ∧ (d)i,0 =m (d)j,0) (∧El)

∨ (∃j<i.(d)i,1 = 〈SN(→), (d)i,1,1, (d)j,1〉 ∧ For((d)i,1,1) (→I)

∧ msm((d)i,0, (d)j,0) = 0

∧ ∀n<lh(msm((d)j,0, (d)i,0)) ((msm((d)j,0, (d)i,0))n = (d)i,1,1))

76 4. GÖDEL’S THEOREMS

∨ (∃j, k<i.(d)j,1 = 〈SN(→), (d)k,1, (d)i,1〉 ∧ (d)i,0 =m (d)j,0 ∗ (d)k,0) (→E)

∨ (∃j<i.(d)i,1 = 〈SN(∀), (d)i,1,1, (d)j,1〉 ∧ Var((d)i,1,1) (∀I)

∧ (d)i,0 =m (d)j,0 ∧ ∀n<lh((d)i,0)¬FV((d)i,1,1, (d)i,0,n))

∨ (∃j<i.(d)j,1,0 = SN(∀) ∧ (d)i,0 =m (d)j,0 (∀E)

∧ ((d)i,1 = (d)j,1,2 ∨ ∃n<(d)i,1.Ter(n)

∧ (d)i,1 = sub((d)j,1,2, 〈〈(d)j,1,1, n〉〉))).
Note that (1) this clearly defines an elementary set, and (2) if one carefully
reads the definition, then it becomes clear that d is in Deriv iff d codes a
sequence of pairs (sequents) Γi ⇒ Ai with Γi a multiset, such that this
sequence constitutes a derivation in minimal logic, i.e. each sequent is either
an axiom or else follows from previous sequents by a rule. Thus

Lemma.

(a) Deriv(d) if and only if d is the Gödel number of a derivation.
(b) Deriv is elementary.

1.4. Axiomatizable Theories. A set S of formulas is called recursive
(elementary , Σ0

1-definable), if pSq := { pAq | A ∈ S } is recursive (elemen-
tary, Σ0

1-definable). Clearly the sets StabaxL of stability axioms and EqL of
L-equality axioms are elementary.

Now let L be an elementarily presented language with = in L. A theory
T with L(T) ⊆ L is called recursively (elementarily) axiomatizable, if there
is a recursive (elementary) set S of closed L-formulas such that T = {A ∈
L | S ∪ EqL `c A }.

Theorem. For theories T with L(T) ⊆ L the following are equivalent.

(a) T is recursively axiomatizable.
(b) T is elementarily axiomatizable.
(c) T is Σ0

1-definable.

Proof. (c) ⇒ (b). Let pTq be Σ0
1-definable. Then by Section 2.5

of Chapter 3 there exists an f ∈ E such that pTq = ran(f), and by the
argument there we can assume f(n) ≤ n for all n. Let f(n) = pAnq. We
define an elementary function g with the property g(n) = pA0 ∧ · · · ∧ Anq

by

g(0) := f(0),

g(n + 1) := g(n) ∧̇ f(n + 1),

where a ∧̇ b := 〈SN(∧), a, b〉. Clearly g can be bounded in E . For S :=
{A0 ∧ · · · ∧ An | n ∈ N } we have pSq = ran(g), and this set is elementary
because of a ∈ ran(g) ↔ ∃n<a (a = g(n)). T is elementarily axiomatizable,
since T = {A ∈ L | S ∪ EqL `c A }.

(b) ⇒ (a) is clear.
(a) ⇒ (c). Let T be axiomatized by S with pSq recursive. Then

a ∈ pTq ↔ ∃d∃c<d.Deriv(d) ∧ (d)lh(d)−· 1 = 〈c, a〉 ∧
∀i<lh(c) ((c)i ∈ pStabaxq ∪ pEqq ∪ pSq).

Hence pTq is Σ0
1-definable. ¤

2. UNDEFINABILITY OF THE NOTION OF TRUTH 77

A theory T in our elementarily presented language L is called axioma-
tized , if it is given by a Σ0

1-definable axiom system AxT . By the theorem just
proved we can even assume that AxT is elementary. For such axiomatized
theories we define PrfT ⊆ N × N by

PrfT (d, a) :↔ Deriv(d) ∧ ∃c<d.(d)lh(d)−· 1 = 〈c, a〉 ∧
∀i<lh(c) ((c)i ∈ pStabaxq ∪ pEqq ∪ pAxT q).

Clearly PrfT is elementary and PrfT (d, a) if and only if d is a derivation of
a sequent Γ ⇒ A with Γ composed from stability axioms, equality axioms
and formulas from AxT , and a = pAq.

A theory T is called consistent , if there is a closed formula A such that
A /∈ T ; otherwise T is called inconsistent .

Corollary. Every axiomatized complete theory T is recursive.

Proof. If T is inconsistent, then pTq is recursive. If not, then from the
completeness of T we obtain

a ∈ N \ pTq ↔ a /∈ For ∨ ∃b<aFV(b, a) ∨ ¬̇a ∈ pTq,

where ¬̇a := a →̇ p⊥q and a →̇ b := 〈SN(→), a, b〉. Hence with pTq also
N \ pTq is Σ0

1-definable and therefore pTq is recursive. ¤

2. Undefinability of the Notion of Truth

Recall the convention in 1.2 of Chapter 1: once a formula has been
introduced as A(x), i.e., A with a designated variable x, we write A(t) for
A[x := t], and similarly with more variables.

2.1. Definable Relations. Let M be an L-structure. A relation R ⊆
|M|n is called definable in M if there is an L-formula A(x1, . . . , xn) with
only the free variables shown such that

R = { (a1, . . . , an) ∈ |M|n | M |= A[a1, . . . , an] }.
We assume in this section that |M| = N, 0 is a constant in L and S is a
unary function symbol in L with 0M = 0 and SM(a) = a+1. Then for every
a ∈ N we can define the numeral a ∈ TerL by 0 := 0 and a + 1 := S(a).
Observe that in this case the definability of R ⊆ Nn by A(x1, . . . , xn) is
equivalent to

R = { (a1, . . . , an) ∈ Nn | M |= A(a1, . . . , an) }.
Furthermore let L be an elementarily presented language. We shall always
assume in this section that every elementary relation is definable in M. A
set S of formulas is called definable in M, if pSq := { pAq | A ∈ S } is
definable in M.

We shall show that already from these assumptions it follows that the
notion of truth for M, more precisely the set Th(M) of all closed formulas
valid in M, is undefinable in M. From this it will follow in turn that the
notion of truth is in fact undecidable, for otherwise the set Th(M) would
be recursive (by Church’s Thesis), hence Σ0

1-definable, and hence definable,
because we have assumed already that all elementary relations are definable
in M.

78 4. GÖDEL’S THEOREMS

2.2. Fixed Points. For the proof we shall need the following lemma,
which will be generalized in the next section.

Lemma (Semantical Fixed Point Lemma). If every elementary relation
is definable in M, then for every L-formula B(z) with only z free we can
find a closed L-formula A such that

M |= A if and only if M |= B[pAq].

Proof. We define an elementary function s by

s(b, k) := sub(b, 〈〈pzq, pkq〉〉).

Here z is a specially given variable determined by B(z), say ∗0. Then for
every formula C(z) we have

s(pCq, k) = sub(pCq, 〈〈pzq, pkq〉〉) = pC(k)q,

hence in particular

s(pCq, pCq) = pC(pCq)q.

By assumption the graph Gs of s is definable in M, by As(x1, x2, x3) say.
Let

C(z) := ∃x.B(x) ∧ As(z, z, x),

A := C(pCq),

so

A = ∃x.B(x) ∧ As(pCq, pCq, x).

Hence M |= A if and only if ∃a∈N.M |= B[a] and a = pC(pCq)q, so if and
only if M |= B[pAq]. ¤

2.3. Undefinability. We can now prove the undefinability of truth.

Theorem (Tarski’s Undefinability Theorem). Assume that every ele-
mentary relation is definable in M. Then Th(M) is undefinable in M,
hence in particular not Σ0

1-definable.

Proof. Assume that pTh(M)q is definable by BW (z). Then for all
closed formulas A

M |= A if and only if M |= BW [pAq].

Now consider the formula ¬BW (z) and choose by the Fixed Point Lemma
a closed L-formula A such that

M |= A if and only if M |= ¬BW [pAq].

This contradicts the equivalence above.
We already have noticed that all Σ0

1-definable relations are definable in
M. Hence it follows that pTh(M)q cannot be Σ0

1-definable. ¤

3. THE NOTION OF TRUTH IN FORMAL THEORIES 79

3. The Notion of Truth in Formal Theories

We now want to generalize the arguments of the previous section. There
we have made essential use of the notion of truth in a structure M, i.e. of
the relation M |= A. The set of all closed formulas A such that M |= A has
been called the theory of M, denoted Th(M).

Now instead of Th(M) we shall start more generally from an arbitrary
theory T . We shall deal with the question as to whether in T there is a notion
of truth (in the form of a truth formula B(z)), such that B(z) “means” that
z is “true”.

What shall this mean? We have to explain all the notions used without
referring to semantical concepts at all.

• z ranges over closed formulas (or sentences) A, or more precisely
over their Gödel numbers pAq.

• A “true” is to be replaced by T ` A.
• C “equivalent” to D is to be replaced by T ` C ↔ D.

We want to study the question as to whether it is possible that a truth
formula B(z) exists, such that for all sentences A we have T ` A ↔ B(pAq).
The result will be that this is impossible, under rather weak assumptions on
the theory T .

3.1. Representable Relations. Technically, the issue will be to re-
place the notion of definability by the notion of “representability” within a
formal theory.

Let L again be an elementarily presented language with 0, S, = in L and
T be a theory containing the equality axioms EqL.

Definition. A relation R ⊆ Nn is representable in T if there is a formula
A(x1, . . . , xn) such that

T ` A(a1, . . . , an), if (a1, . . . , an) ∈ R,

T ` ¬A(a1, . . . , an), if (a1, . . . , an) /∈ R.

A function f : Nn → N is called representable in T if there is a formula
A(x1, . . . , xn, y) representing the graph Gf ⊆ Nn+1 of f , i.e., such that

T ` A(a1, . . . , an, f(a1, . . . , an)),(16)

T ` ¬A(a1, . . . , an, c), if c 6= f(a1, . . . , an)(17)

and such that in addition

T ` A(a1, . . . , an, y) → A(a1, . . . , an, z) → y = z for all a1, . . . , an ∈ N.
(18)

Notice that in case T ` b 6= c for b < c the condition (17) follows from
(16) and (18).

Lemma. If the characteristic function cR of a relation R ⊆ Nn is repre-
sentable in T , then so is the relation R itself.

Proof. For simplicity assume n = 1. Let A(x, y) be a formula rep-
resenting cR. We show that A(x, 1) represents the relation R. So assume
a ∈ R. Then cR(a) = 1, hence (a, 1) ∈ GcR

, hence T ` A(a, 1). Conversely,
assume a /∈ R. Then cR(a) = 0, hence (a, 1) /∈ GcR

, hence T ` ¬A(a, 1). ¤

80 4. GÖDEL’S THEOREMS

3.2. Fixed Points. We can now prove a generalized (syntactical) ver-
sion of the Fixed Point Lemma above.

Lemma (Fixed Point Lemma). Assume that all elementary functions
are representable in T . Then for every formula B(z) with only z free we can
find a closed formula A such that

T ` A ↔ B(pAq).

Proof. We start as in the proof of the Semantical Fixed Point Lemma.
Let As(x1, x2, x3) be a formula which represents the elementary function
s(b, k) := sub(b, 〈〈pzq, pkq〉〉). Let

C(z) := ∃x.B(x) ∧ As(z, z, x),

A := C(pCq),

i.e.

A = ∃x.B(x) ∧ As(pCq, pCq, x).

Because of s(pCq, pCq) = pC(pCq)q = pAq we can prove in T

As(pCq, pCq, x) ↔ x = pAq,

hence by definition of A also

A ↔ ∃x.B(x) ∧ x = pAq

and hence

A ↔ B(pAq).

¤

Notice that for T = Th(M) we obtain the above (semantical) Fixed
Point Lemma as a special case.

3.3. Undefinability. Using the Fixed Point Lemma above, we can
generalize the undefinability result as well.

Theorem (Undefinability of the Notion of Truth). Let T be a consistent
theory such that all elementary functions are representable in T . Then there
cannot exist a formula B(z) with only z free defining the notion of truth,
i.e. such that for all closed formulas A

T ` A ↔ B(pAq).

Proof. Assume we would have such a B(z). Consider the formula
¬B(z) and choose by the Fixed Point Lemma a closed formula A such that

T ` A ↔ ¬B(pAq).

For this A we have T ` A ↔ ¬A, contradicting the consistency of T . ¤

For T = Th(M) Tarski’s Undefinability Theorem is a special case.

4. UNDECIDABILITY AND INCOMPLETENESS 81

4. Undecidability and Incompleteness

In this section we consider a consistent formal theory T with the property
that all recursive functions are representable in T . This is a very weak
assumption, as we shall show in the next section: it is always satisfied if the
theory allows to develop a certain minimum of arithmetic.

We shall show that such a theory necessarily is undecidable. Moreover
we shall prove Gödel’s First Incompleteness Theorem, which says that every
axiomatized such theory must be incomplete. We will also prove a sharp-
ened form of this theorem due to Rosser, which explicitely provides a closed
formula A such that neither A nor ¬A is provable in the theory T .

4.1. Undecidability; Gödel’s First Incompleteness Theorem.

Let again L be an elementarily presented language with 0, S, = in L, and T
be a theory containing the equality axioms EqL.

Theorem. Assume that T is a consistent theory such that all recursive
functions are representable in T . Then T is not recursive.

Proof. Assume that T is recursive. By assumption there exists a for-
mula B(z) in representing pTq in T . Choose by the Fixed Point Lemma in
3.2 a closed formula A such that

T ` A ↔ ¬B(pAq).

We shall prove (∗) T 6` A and (∗∗) T ` A; this is the desired contradiction.
Ad (∗). Assume T ` A. Then A ∈ T , hence pAq ∈ pTq, hence T `

B(pAq) (because B(z) represents in T the set pTq). By the choice of A it
follows that T ` ¬A, which contradicts the consistency of T .

Ad (∗∗). By (∗) we know T 6` A. Therefore A /∈ T , hence pAq /∈ pTq

and hence T ` ¬B(pAq). By the choice of A it follows that T ` A. ¤

Theorem (Gödel’s First Incompleteness Theorem). Assume that T is
an axiomatized consistent theory with the property that all recursive func-
tions are representable in T . Then T is incomplete.

Proof. This is an immediate consequence of the above theorem and
the corollary in 1.4. ¤

4.2. Rosser’s Form of Gödel’s First Incompleteness Theorem.

As already mentioned, we now want to sharpen the Incompleteness Theorem,
by producing a formula A such that neither A nor ¬A is provable. The
original idea is due to Rosser.

Theorem (Gödel-Rosser). Let T be an axiomatized consistent L-theory
with 0, S, = in L and EqL ⊆ T . Assume that there is a formula L(x, y) –
written x < y – such that

T ` ∀x.x < a → x = 0 ∨ · · · ∨ x = a − 1,(19)

T ` ∀x.x = 0 ∨ · · · ∨ x = a ∨ a < x.(20)

Moreover assume that every elementary function is representable in T . Then
we can find a closed formula A such that neither A nor ¬A is provable in
T .

82 4. GÖDEL’S THEOREMS

Proof. We first define RefutT ⊆ N × N by

RefutT (d, a) :↔ PrfT (d, ¬̇a).

So RefutT is elementary, and we have RefutT (d, a) if and only if d is a refu-
tation of a in T , i.e., d is a derivation of a sequent Γ ⇒ ¬A coded by
a = p¬Aq and Γ is composed from stability axioms and formulas from
AxT . Let BPrfT (x1, x2) and BRefutT (x1, x2) be formulas representing PrfT
and RefutT , respectively. Choose by the Fixed Point Lemma in 3.2 a closed
formula A such that

T ` A ↔ ∀x.BPrfT (x, pAq) → ∃y.y < x ∧ BRefutT (y, pAq).

So A expresses its own underivability, in the form (due to Rosser) “For every
proof of me there is a shorter proof of my negation”.

We shall show (∗) T 6` A and (∗∗) T 6` ¬A. Ad (∗). Assume T ` A.
Choose a such that

PrfT (a, pAq).

Then we also have

not RefutT (b, pAq) for all b,

since T is consistent. Hence we have

T ` BPrfT (a, pAq),

T ` ¬BRefutT (b, pAq) for all b.

By (19) we can conclude

T ` BPrfT (a, pAq) ∧ ∀y.y < a → ¬BRefutT (y, pAq)

Hence we have

T ` ∃x.BPrfT (x, pAq) ∧ ∀y.y < x → ¬BRefutT (y, pAq),

T ` ¬A.

This contradicts the assumed consistency of T .
Ad (∗∗). Assume T ` ¬A. Choose a such that

RefutT (a, pAq).

Then we also have

not PrfT (b, pAq) for all b,

since T is consistent. Hence we have

T ` BRefutT (a, pAq),

T ` ¬BPrfT (b, pAq) for all b.

But this implies

T ` ∀x.BPrfT (x, pAq) → ∃y.y < x ∧ BRefutT (y, pAq),

as can be seen easily by cases on x, using (20). Hence T ` A. But this again
contradicts the assumed consistency of T . ¤

5. REPRESENTABILITY 83

4.3. Relativized Gödel-Rosser Theorem. Finally we formulate a
variant of this theorem which does not assume any more that the theory T
talks about numbers only.

Theorem (Gödel-Rosser). Assume that T is an axiomatized consistent
L-theory with 0, S, = in L and EqL ⊆ T . Furthermore assume that there are
formulas N(x) and L(x, y) – written Nx and x < y – such that T ` N0,
T ` ∀x∈N N(S(x)) and

T ` ∀x∈N.x < a → x = 0 ∨ · · · ∨ x = a − 1,

T ` ∀x∈N.x = 0 ∨ · · · ∨ x = a ∨ a < x.

Here ∀x∈N A is short for ∀x.Nx → A. Moreover assume that every ele-
mentary function is representable in T . Then one can find a closed formula
A such that neither A nor ¬A is provable in T .

Proof. As before; just relativize all quantifiers to N . ¤

5. Representability

We show in this section that already very simple theories have the prop-
erty that all recursive functions are representable in them.

5.1. A Weak Arithmetic. It is here where the need for Gödel’s β-
function arises: Recall that we had used it to prove that the class of recursive
functions can be generated without use of the primitive recursion scheme,
i.e. with composition and the unbounded µ-operator as the only generating
schemata.

Theorem. Assume that T is an L-theory with 0, S, = in L and EqL ⊆ T .
Furthermore assume that there are formulas N(x) and L(x, y) – written Nx
and x < y – such that T ` N0, T ` ∀x∈N N(S(x)) and the following hold:

T ` S(a) 6= 0 for all a ∈ N,(21)

T ` S(a) = S(b) → a = b for all a, b ∈ N,(22)

the functions + and · are representable in T ,(23)

T ` ∀x∈N (x 6< 0),(24)

T ` ∀x∈N.x < S(b) → x < b ∨ x = b for all b ∈ N,(25)

T ` ∀x∈N.x < b ∨ x = b ∨ b < x for all b ∈ N.(26)

Here again ∀x∈N A is short for ∀x.Nx → A. Then T fulfills the assumptions
of the theorem in 4.3., i.e., the Gödel-Rosser Theorem relativized to N . In
particular we have, for all a ∈ N

T ` ∀x∈N.x < a → x = 0 ∨ · · · ∨ x = a − 1,(27)

T ` ∀x∈N.x = 0 ∨ · · · ∨ x = a ∨ a < x,(28)

and every recursive function is representable in T .

Proof. (27) can be proved easily by induction on a. The base case
follows from (24), and the step from the induction hypothesis and (25).
(28) immediately follows from the trichotomy law (26), using (27).

For the representability of recursive functions, first note that the for-
mulas x = y and x < y actually do represent in T the equality and the

84 4. GÖDEL’S THEOREMS

less-than relations, respectively. From (21) and (22) we can see immediately
that T ` a 6= b when a 6= b. Assume a 6< b. We show T ` a 6< b by induction
on b. T ` a 6< 0 follows from (24). In the step we have a 6< b + 1, hence
a 6< b and a 6= b, hence by induction hypothesis and the representability
(above) of the equality relation, T ` a 6< b and T ` a 6= b, hence by (25)
T ` a 6< S(b). Now assume a < b. Then T ` a 6= b and T ` b 6< a, hence by
(26) T ` a < b.

We now show by induction on the definition of µ-recursive functions,
that every recursive function is representable in T . Observe first that the
second condition (17) in the definition of representability of a function au-
tomatically follows from the other two conditions (and hence need not be
checked further). This is because if c 6= f(a1, . . . , an) then by contraposing
the third condition (18),

T ` c 6= f(a1, . . . , an) → A(a1, . . . , an, f(a1, . . . , an)) → ¬A(a1, . . . , an, c)

and hence by using representability of equality and the first representability
condition (16) we obtain T ` ¬A(a1, . . . , an, c)

The initial functions constant 0, successor and projection (onto the i-
th coordinate) are trivially represented by the formulas 0 = y, S(x) = y
and xi = y respectively. Addition and multiplication are represented in
T by assumption. Recall that the one remaining initial function of µ-
recursiveness is −· , but this is definable from the characteristic function
of < by a −· b = µi. b + i ≥ a = µi. c<(b + i, a) = 0. We now show that the
characteristic function of < is representable in T . (It will then follow that
−· is representable, once we have shown that the representable functions are
closed under µ.) So define

A(x1, x2, y) := (x1 < x2 ∧ y = 1) ∨ (x1 6< x2 ∧ y = 0).

Assume a1 < a2. Then T ` a1 < a2, hence T ` A(a1, a2, 1). Now assume
a1 6< a2. Then T ` a1 6< a2, hence T ` A(a1, a2, 0). Furthermore notice
that A(x1, x2, y) ∧ A(x1, x2, z) → y = z already follows logically from the
equality axioms (by cases on x1 < x2).

For the composition case, suppose f is defined from h, g1, . . . , gm by

f(~a) = h(g1(~a), . . . , gm(~a)).

By induction hypothesis we already have representing formulas Agi
(~x, yi)

and Ah(~y, z). As representing formula for f we take

Af := ∃~y.Ag1
(~x, y1) ∧ · · · ∧ Agm(~x, ym) ∧ Ah(~y, z).

Assume f(~a) = c. Then there are b1, . . . , bm such that T ` Agi
(~a, bi) for each

i, and T ` Ah(~b, c) so by logic T ` Af (~a, c). It remains to show uniqueness
T ` Af (~a, z1) → Af (~a, z2) → z1 = z2. But this follows by logic from the
induction hypothesis for gi, which gives

T ` Agi
(~a, y1i) → Agi

(~a, y2i) → y1i = y2i = gi(~a)

and the induction hypothesis for h, which gives

T ` Ah(~b, z1) → Ah(~b, z2) → z1 = z2 with bi = gi(~a).

For the µ case, suppose f is defined from g (taken here to be binary for
notational convenience) by f(a) = µi (g(i, a) = 0), assuming ∀a∃i (g(i, a) =

5. REPRESENTABILITY 85

0). By induction hypothesis we have a formula Ag(y, x, z) representing g.
In this case we represent f by the formula

Af (x, y) := Ny ∧ Ag(y, x, 0) ∧ ∀v∈N.v < y → ∃u.u 6= 0 ∧ Ag(v, x, u).

We first show the representability condition (16), that is T ` Af (a, b) when
f(a) = b. Because of the form of Af this follows from the assumed repre-
sentability of g together with T ` v < b → v = 0 ∨ · · · ∨ v = b − 1.

We now tackle the uniqueness condition (18). Given a, let b := f(a) (thus
g(b, a) = 0 and b is the least such). It suffices to show T ` Af (a, y) → y = b,
and we do this by proving T ` y < b → ¬Af (a, y) and T ` b < y →
¬Af (a, y), and then appealing to the trichotomy law.

We first show T ` y < b → ¬Af (a, y). Now since, for any i < b,
T ` ¬Ag(i, a, 0) by the assumed representability of g, we obtain immediately
T ` ¬Af (a, i). Hence because of T ` y < b → y = 0 ∨ · · · ∨ y = b − 1 the
claim follows.

Secondly, T ` b < y → ¬Af (a, y) follows almost immediately from
T ` b < y → Af (a, y) → ∃u.u 6= 0 ∧ Ag(b, a, u) and the uniqueness for g,
T ` Ag(b, a, u) → u = 0. This now completes the proof. ¤

5.2. Robinson’s Theory Q. We conclude this section by consider-
ing a special and particularly simple arithmetical theory due originally to
Robinson. Let L1 be the language given by 0, S, +, · and =, and let Q be
the theory determined by the axioms EqL1

and

S(x) 6= 0,(29)

S(x) = S(y) → x = y,(30)

x + 0 = x,(31)

x + S(y) = S(x + y),(32)

x · 0 = 0,(33)

x · S(y) = x · y + x,(34)

∃z (x + S(z) = y) ∨ x = y ∨ ∃z (y + S(z) = x).(35)

Theorem. Every theory T ⊇ Q fulfills the assumptions of the theorem
of Gödel-Rosser in 4.3, w.r.t. the definition L(x, y) := ∃z (x + S(z) = y) of
the <-relation. Moreover, every recursive function is representable in T .

Proof. We show that T with N(x) := (x = x) and L(x, y) := ∃z (x +
S(z) = y) satisfies the conditions of the theorem in 5.1. For (21) and (22)
this is clear. For (23) we can take x + y = z and x · y = z as representing
formulas. For (24) we have to show ¬∃z (x + S(z) = 0); this follows from
(32) and (29). For the proof of (25) we need the auxiliary proposition

(36) x = 0 ∨ ∃y (x = 0 + S(y)),

which will be attended to below. So assume x + S(z) = S(b), hence also
S(x+z) = S(b) and therefore x+z = b. We now use (36) for z. In case z = 0
we obtain x = b, and in case ∃y (z = 0 + S(y)) we have ∃y′ (x + S(y′) = b),
since 0 + S(y) = S(0 + y). Thus (25) is proved. (26) follows immediately
from (35).

86 4. GÖDEL’S THEOREMS

For the proof of (36) we use (35) with y = 0. It clearly suffices to exclude
the first case ∃z (x + S(z) = 0). But this means S(x + z) = 0, contradicting
(29). ¤

Corollary (Essential Undecidability of Q). Every consistent theory
T ⊇ Q is non-recursive.

Proof. By the theorems in 5.2 and 4.1. ¤

5.3. Undecidability of First Order Logic. As a simple corollary to
the (essential) undecidability of Q we even obtain the undecidability of pure
logic.

Corollary (Undecidability of First Order Logic). The set of formulas
derivable in classical first order logic is non-recursive.

Proof. Otherwise Q would be recursive, because a formula A is deriv-
able in Q if and only if the implication B → A is derivable in classical first
order logic, where B is the conjunction of the finitely many axioms and
equality axioms of Q. ¤

Remark. Notice that it suffices that the first order logic should have
one binary relation symbol (for =), one constant symbol (for 0), one unary
function symbol (for S) and two binary functions symbols (for + and ·). The
study of decidable fragments of first order logic is one of the oldest research
areas of Mathematical Logic. For more information see Börger, Grädel and
Gurevich [3].

5.4. Representability by Σ1-formulas of the language L1. By
reading through the above proof of representability, one sees easily that the
representing formulas used are of a restricted form, having no unbounded
universal quantifiers and therefore defining Σ0

1-relations. This will be of cru-
cial importance for our proof of Gödel’s Second Incompleteness Theorem to
follow, but in addition we need to make a syntactically precise definition of
the class of formulas actually involved.

Definition. The Σ1-formulas of the language L1 are those generated
inductively by the following clauses:

• Only atomic formulas of the restricted forms x = y, x 6= y, 0 = x,
S(x) = y, x + y = z and x · y = z are allowed as Σ1-formulas.

• If A and B are Σ1-formulas, then so are A ∧ B and A ∨ B.
• If A is a Σ1-formula, then so is ∀x<y A, which is an abbreviation

for ∀x.∃z (x + S(z) = y) → A.
• If A is a Σ1-formula, then so is ∃x A.

Corollary. Every recursive function is representable in Q by a Σ1-
formula in the language L1.

Proof. This can be seen immediately by inspecting the proof of the
theorem in 5.1. Only notice that because of the equality axioms ∃z (x +
S(z) = y) is equivalent to ∃z∃w (S(z) = w∧x+w = y) and A(0) is equivalent
to ∃x.0 = x ∧ A. ¤

6. UNPROVABILITY OF CONSISTENCY 87

6. Unprovability of Consistency

We have seen in the Gödel-Rosser Theorem how, for every axiomatized
consistent theory T safisfying certain weak assumptions, we can construct
an undecidable sentence A meaning “For every proof of me there is a shorter
proof of my negation”. Because A is unprovable, it is clearly true.

Gödel’s Second Incompleteness Theorem provides a particularly inter-
esting alternative to A, namely a formula ConT expressing the consistency
of T . Again it turns out to be unprovable and therefore true.

We shall prove this theorem in a sharpened form due to Löb.

6.1. Σ1-Completeness of Q. We begin with an auxiliary proposition,
expressing the completeness of Q with respect to Σ1-formulas.

Lemma. Let A(x1, . . . , xn) be a Σ1-formulas in the language L1 deter-
mined by 0, S, +, · und =. Assume that N1 |= A[a1, . . . , an] where N1 is
the standard model of L1. Then Q ` A(a1, . . . , an).

Proof. By induction on the Σ1-formulas of the language L1. For atomic
formulas, the cases have been dealt with either in the earlier parts of the
proof of the theorem in 5.1, or (for x+ y = z and x · y = z) they follow from
the recursion equations (31) - (34).

Cases A∧B, A∨B. The claim follows immediately from the induction
hypothesis.

Case ∀x<y A(x, y, z1, . . . , zn); for simplicity assume n = 1. Suppose
N1 |= (∀x<y A)[b, c]. Then also N1 |= A[i, b, c] for each i < b and hence by
induction hypothesis Q ` A(i, b, c). Now by the theorem in 5.2

Q ` ∀x<b.x = 0 ∨ · · · ∨ x = b − 1,

hence

Q ` (∀x<y A)(b, c).

Case ∃x A(x, y1, . . . , yn); for simplicity take n = 1. Assume N1 |=
(∃x A)[b]. Then N1 |= A[a, b] for some a ∈ N, hence by induction hypothesis
Q ` A(a, b) and therefore Q ` ∃x A(x, b). ¤

6.2. Formalized Σ1-Completeness.

Lemma. In an appropriate theory T of arithmetic with induction, we
can formally prove for any Σ1-formula A

A(~x) → ∃pPrfT (p, pA(~̇x)q).

Here PrfT (p, z) is a suitable Σ1-formula which represents in Robinson’s Q
the recursive relation “a is the Gödel number of a proof in T of the formula
with Gödel number b”. Also pA(ẋ)q is a term which represents, in Q, the
numerical function mapping a number a to the Gödel number of A(a).

Proof. We have not been precise about the theory T in which this
result is to be formalized, but we shall content ourselves at this stage with
merely pointing out, as we proceed, the basic properties that are required.
Essentially T will be an extension of Q, together with induction formalized
by the axiom schema

B(0) ∧ (∀x.B(x) → B(S(x))) → ∀x B(x)

88 4. GÖDEL’S THEOREMS

and it will be assumed that T has sufficiently many basic functions available
to deal with the construction of appropriate Gödel numbers.

The proof goes by induction on the build-up of the Σ1-formula A(~x).
We consider three atomic cases, leaving the others to the reader. Suppose

A(x) is the formula 0 = x. We show T ` 0 = x → ∃pPrfT (p, p0 = ẋq), by
induction on x. The base case merely requires the construction of a numeral
representing the Gödel number of the axiom 0 = 0, and the induction step is
trivial because T ` S(x) 6= 0. Secondly suppose A is the formula x + y = z.
We show T ` ∀z.x + y = z → ∃pPrfT (p, pẋ + ẏ = żq) by induction on y. If
y = 0, the assumption gives x = z and one requires only the Gödel number
for the axiom ∀x(x + 0 = x) which, when applied to the Gödel number of
the x-th numeral, gives ∃pPrfT (p, pẋ + 0 = żq). If y is a successor S(u),
then the assumption gives z = S(v) where x + u = v, so by the induction
hypothesis we already have a p such that PrfT (p, pẋ + u̇ = v̇q). Applying
the successor to both sides, one then easily obtains from p a p′ such that
PrfT (p′, pẋ + ẏ = żq). Thirdly suppose A is the formula x 6= y. We show
T ` ∀y.x 6= y → ∃pPrfT (p, pẋ 6= ẏq) by induction on x. The base case
x = 0 requires a subinduction on y. If y = 0, then the claim is trivial (by
ex-falso). If y = S(u), we have to produce a Gödel number p such that
PrfT (p, p0 6= S(u̇q), but this is just an axiom. Now consider the step case
x = S(v). Again we need an auxiliary induction on y. Its base case is dealt
with exactly as before, and when y = S(u) it uses the induction hypothesis
for v 6= u together with the injectivity of the successor.

The cases where A is built up by conjunction or disjunction are rather
trivial. One only requires, for example in the conjunction case, a function
which combines the Gödel numbers of the proofs of the separate conjuncts
into a single Gödel number of a proof of the conjunction A itself.

Now consider the case ∃yA(y, x) (with just one parameter x for sim-
plicity). By the induction hypothesis we already have T ` A(y, x) →
∃pPrfT (p, pA(ẏ, ẋ)q). But any Gödel number p such that PrfT (p, pA(ẏ, ẋ)q)
can easily be transformed (by formally applying the ∃-rule) into a Gödel
number p′ such that PrfT (p′, p∃yA(y, ẋ)q). Therefore we obtain as required,
T ` ∃yA(y, x) → ∃p′PrfT (p′, p∃yA(y, ẋ)q).

Finally suppose the Σ1-formula is of the form ∀u<y A(u, x). We must
show

∀u<y A(u, x) → ∃pPrfT (p, p∀u<ẏ A(u, ẋ)q).

By the induction hypothesis

T ` A(u, x) → ∃pPrfT (p, pA(u̇, ẋ)q)

so by logic

T ` ∀u<y A(u, x) → ∀u<y∃pPrfT (p, pA(u̇, ẋ)q).

The required result now follows immediately from the auxiliary lemma:

T ` ∀u<y∃pPrfT (p, pA(u̇, ẋ)q) → ∃qPrfT (q, p∀u<ẏ A(u, ẋ)q).

It remains only to prove this, which we do by induction on y (inside T). In
case y = 0 a proof of u < 0 → A is trivial, by ex-falso, so the required Gödel
number q is easily constructed. For the step case y = S(z) by assumption
we have ∀u<z∃pPrfT (p, pA(u̇, ẋ)q), hence ∃qPrfT (q, p∀u<ż A(u, ẋ)q) by IH.

6. UNPROVABILITY OF CONSISTENCY 89

Also ∃p′PrfT (p′, pA(ż, ẋ)q). Now we only have to combine p′ and q to obtain
(by means of an appropriate “simple” function) a Gödel number q′ so that
PrfT (q′, p∀u<ẏ A(u, ẋ)q). ¤

6.3. Derivability Conditions. So now let T be an axiomatized con-
sistent theory with T ⊇ Q, and possessing “enough” induction to formalize
Σ1-completeness as we have just done. Define, from the associated formula
PrfT , the following L1-formulas:

ThmT (x) := ∃y PrfT (y, x),

ConT := ¬∃y PrfT (y, p⊥q).

So ThmT (x) defines in N1 the set of formulas provable in T , and we have
N1 |= ConT if and only if T is consistent. For L1-formulas A let ¤A :=
ThmT (pAq).

Now consider the following two derivability conditions for T (Hilbert-
Bernays [12])

T ` A → ¤A (A closed Σ1-formula of the language L1),(37)

T ` ¤(A → B) → ¤A → ¤B.(38)

(37) is just a special case of formalized Σ1-completeness for closed formulas,
and (38) requires only that the theory T has a term that constructs, from
the Gödel number of a proof of A → B and the Gödel number of a proof
of A, the Gödel number of a proof of B, and furthermore this fact must be
provable in T .

Theorem (Gödel’s Second Incompleteness Theorem). Let T be an ax-
iomatized consistent extension of Q, satisfying the derivability conditions
(37) und (38). Then T 6` ConT .

Proof. Let C := ⊥ in the theorem below, which is Löb’s generalization
of Gödel’s original proof. ¤

Theorem (Löb). Let T be an axiomatized consistent extension of Q
satisfying the derivability conditions (37) and (38). Then for any closed L1-
formula C, if T ` ¤C → C (that is, T ` ThmT (pCq) → C), then already
T ` C.

Proof. Assume T ` ¤C → C. Choose A by the Fixed Point Lemma
in 3.2 such that

(39) Q ` A ↔ (¤A → C).

We must show T ` C. First we show T ` ¤A → C, as follows.

T ` A → ¤A → C by (39)

T ` ¤(A → ¤A → C) by Σ1-completeness

T ` ¤A → ¤(¤A → C) by (38)

T ` ¤A → ¤¤A → ¤C again by (38)

T ` ¤A → ¤C because T ` ¤A → ¤¤A by (37).

Therefore from the assumption T ` ¤C → C we obtain T ` ¤A → C.
This implies T ` A by (39), and then T ` ¤A by Σ1-completeness. But

T ` ¤A → C as we have just shown, therefore T ` C. ¤

90 4. GÖDEL’S THEOREMS

Remark. It follows immediately that if T is any axiomatized consistent
extension of Q satisfying the derivability conditions (37) und (38), then the
reflection scheme

ThmT (pCq) → C for closed L1-formulas C

is not derivable in T . For by Löb’s Theorem, it cannot be derivable when
C is underivable.

By adding to Q the induction scheme for all formulas we obtain Peano-
arithmetic PA, which is the most natural example of a theory T to which
the results above apply. However, various weaker fragments of PA, obtained
by restricting the classes of induction formulas, would serve equally well as
examples of such T .

7. Notes

The undecidability of first order logic has first been proved by Church;
however, the basic idea of the proof was present in Gödels [11] already

The fundamental papers on incompleteness are Gödel’s [10] (from 1930)
and [11] (from 1931). Gödel also discovered the β-function, which is of cen-
tral importance for the representation theorem; he made use of the Fixed
Point Lemma only implicitely. His first Incompleteness Theorem is based
on the formula “I am not provable”, a fixed point of ¬ThmT (x). For the
independence of this proposition from the underlying theory T he had to
assume ω-consistency of T . Rosser (1936) proved the sharper result repro-
duced here, using a formula with the meaning “for every proof of me there
is a shorter proof of my negation”. The undefinability of the notion of truth
has first been proved by Tarski (1939). The arithmetical theories R und Q0

(in Exercises 46 and 47) are due to R. Robinson (1950). R is essentially un-
decidable, incomplete and strong enough for Σ1-completeness; moreover, all
recursive relations are representable in R. Q0 is a very natural theory and
in contrast to R finite. Q0 is minimal in the following sense: if one axiom is
deleted, then the resulting theory is not essentially undecidable any more.
The first essentially undecidable theory was found by Mostowski and Tarski
(1939); when readfing the manuscript, J. Robinson had the idea of treating
recursive functions without the scheme of primitive recursion.

Important examples for undecidable theories are (in historic order):
Arithmetic of natural numbers (Rosser, 1936), arithmetic of integers (Tarski,
Mostowski, 1949), arithmetic of rationals and the theory of ordered fields
(J. Robinson 1949), group theory and lattice theory (Tarski 1949). This
is in contrast to the following decidable theories: the theory of addition
for natural numbers (Pressburger 1929), that of multiplication (Mostowski
1952), the theory of abelian groups (Szmielew 1949), of algebraically closed
fields and of boolean algebras (Tarski 1949), the theory of linearly ordered
sets (Ehrenfeucht, 1959).

CHAPTER 5

Set Theory

1. Cumulative Type Structures

Set theory can be viewed as a framework within which mathematics can
be given a foundation. Here we want to develop set theory as a formal theory
within mathematical logic. But first it is necessary to have an intuitive
picture of the notion of a set, to be described by the axioms.

1.1. Cantor’s Definition. Cantor in 1895 gave the following defini-
tion:

Unter einer “Menge” verstehen wir jede Zusammenfassung
M von bestimmten wohlunterschiedenen Objekten m un-
serer Anschauung oder unseres Denkens (welche die Ele-
mente von M genannt werden) zu einem Ganzen.

One can try to make this definition more precise, as follows. Let V be the
collection of all objects “unserer Anschauung oder unseres Denkens”. Let
A(x) denote properties of objects x from V . Then one can form the set
{x | A(x) }, the set of all objects x of V with the property A(x). According
to Cantor’s definition {x | A(x) } is again an object in V .

Examples for properties: (1) x is a natural number. (2) x is a set. (3) x
is a point, y is a line and x lies on y. (4) y is a set and x is an element of y,
shortly: Set(y) ∧ x ∈ y.

However, Cantor’s definition cannot be accepted in its original form, for
it leads to contradictions. The most well known is Russell’s antinomy : Let
x0 := {x | Set(x) ∧ x /∈ x }. Then

x0 ∈ x0 ↔ Set(x0) ∧ x0 /∈ x0 ↔ x0 /∈ x0,

for x0 is a set.

1.2. Shoenfield’s Principle. The root for this contradiction is the
fact that in Cantor’s definition we accept the concept of a finished totality
of all sets. However, this is neither necessary nor does it mirror the usual
practice of mathematics. It completely suffices to form a set only if all its
elements “are available” already. This leads to the concept of a stepwise
construction of sets, or more precisely to the cumulative type structure: We
start with certain “urelements”, that form the sets of level 0. Then on an
arbitrary level we can form all sets whose elements belong to earlier levels.

If for instance we take as urelements the natural numbers, then {27, {5}}
belongs to level 2.

The following natural questions pose themselves: (1) Which urelements
should we choose? (2) How far do the levels reach?

91

92 5. SET THEORY

Ad (1). For the purposes of mathematics it is completely sufficient not
to assume any urelements at all; then one speaks of pure sets. This will be
done in the following.

Level 0: −
Level 1: ∅
Level 2: ∅, {∅}
Level 3: ∅, {∅}, {{∅}}, {∅, {∅}}

and so on.

Ad (2). In [23], Shoenfield formulated the following principle:

Consider a collection S of levels. If a situation can be
conceived where all the levels from S are constructed, then
there exists a level which is past all those levels.

From this admittedly rather vage principle we shall draw exact consequences,
which will be fixed as axioms.

By a set we intuitively understand an object that belongs to some level
of the cumulative type structure. By a class we mean an arbitrary collection
of sets.

So every set clearly is a class. Moreover there are classes that are not
sets, for instance the class V of all sets.

2. Axiomatic Set Theory

In set theory – as in any axiomatic theory – we have to explicitely state
all used properties, including the “obvious” ones.

2.1. Extensionality, Equality. The language of set theory has a sin-
gle non-logical symbol, the element relation ∈. So the only atomic formulas
are of the form x ∈ y (x is an element of y). Equality x = y is defined by

x = y := ∀z.z ∈ x ↔ z ∈ y.

To ensure compatibility of the ∈-relation with equality we need an axiom:

Axiom (Extensionality).

x = y → x ∈ z → y ∈ z.

Remark. If alternatively equality is to be used as a primitive symbol,
one must require the equality axioms and in addition

(∀z.z ∈ x ↔ z ∈ y) → x = y.

As classes in our axiomatic theory we only allow definable collections of
sets. By “definable” we mean definable by a formula in the language of set
theory. More precisely: If A(x) is a formula, then

{x | A(x) }
denotes the class of all sets x with the property A(x).

Instead of classes we could have used properties or more precisely for-
mulas as well. However, classes allow for a simpler and more suggestive
formulation of many of the propositions we want to consider.

2. AXIOMATIC SET THEORY 93

If A(x) is the formula x = x, then {x | A(x) } is called the all class or
the (set theoretic) universe. If A(x) is the formula x /∈ x, then {x | A(x) }
is called the Russell class.

We now give some definitions that will be used all over in the following.
A set b is an element of the class {x | A(x) } if A(b) holds:

b ∈ {x | A(x) } := A(b).

Two classes A, B are equal if they have the same elements:

A = B := ∀x.x ∈ A ↔ x ∈ B.

If A is a class and b a set, then A and b are called equal if they have the
same elements:

A = b := ∀x.x ∈ A ↔ x ∈ b.

In this case we identify the class A with this set b. Instead of “A ist set” we
also write A ∈ V . A class B is an element of a set a (of a class A, resp.) if
B is equal to an element x of a (of A, resp.).

B ∈ a := ∃x.x ∈ a ∧ B = x,

B ∈ A := ∃x.x ∈ A ∧ B = x.

A class A is a proper class if A is not a set:

A proper class := ∀x(x 6= A).

Remark. Every set b is a class, since

b = {x | x ∈ b }.
The Russell class is a proper class, for if {x | x /∈ x } = x0, we would have

x0 ∈ x0 ↔ x0 /∈ x0.

So the Russell construction is not an antinomy any more, but simply says
that there are sets and (proper) classes.

Let A, B be classes (proper classes or sets) and a, b, a1, . . . , an sets. We
define

{a1, . . . , an} := {x | x = a1 ∨ · · · ∨ x = an },
∅ := {x | x 6= x } empty class,

V := {x | x = x } all class,

A ⊆ B := ∀x.x ∈ A → x ∈ B A is subclass of B,

A (B := A ⊆ B ∧A 6= B A is proper subclass of B,

A ∩ B := {x | x ∈ A ∧ x ∈ B } intersection,

A ∪ B := {x | x ∈ A ∨ x ∈ B } union,

A \ B := {x | x ∈ A ∧ x /∈ B } difference,
⋃

A := {x | ∃y.y ∈ A ∧ x ∈ y } big union,
⋂

A := {x | ∀y.y ∈ A → x ∈ y } big intersection,

P(A) := {x | x ⊆ A} power class of A.

In particular a ∪ b =
⋃{a, b} and a ∩ b =

⋂{a, b}, and
⋂ ∅ is the all class.

Moreover P(A) is the class of all subclasses of A that happen to be sets.

94 5. SET THEORY

2.2. Pairs, Relations, Functions, Unions. Ordered pairs are de-
fined by means of a little trick due to Kuratowski:

(a, b) := {x | x = {a} ∨ x = {a, b} } (ordered) pair,

so (a, b) = {{a}, {a, b}}. To make sure that (a, b) is not the empty class, we
have to require axiomatically that {a} and {a, b} are sets:

Axiom (Pairing).

{x, y} is a set.

In the cumulative type structure the pairing axiom clearly holds, because
for any two levels S1 and S2 by the Shoenfield principle there must be a level
S coming after S1 and S2.

Explicitely the pairing axiom is ∀x∀y∃z∀u.u ∈ z ↔ u = x ∨ u = y. In
particular it follows that for every set a the singleton class {a} is a set. It
also follows that (a, b) = {{a}, {a, b}} is a set.

Moreover we define

{ (x, y) | A(x, y) } := { z | ∃x, y.A(x, y) ∧ z = (x, y) }
and

A× B := { (x, y) | x ∈ A ∧ y ∈ B } cartesian product of A, B,

dom(A) := {x | ∃y ((x, y) ∈ A) } domain of A,

rng(A) := { y | ∃x ((x, y) ∈ A) } range of A,

A¹B := { (x, y) | (x, y) ∈ A ∧ x ∈ B } restriction of A to B,

A[B] := { y | ∃x.x ∈ B ∧ (x, y) ∈ A} image of B under A,

A−1 := { (y, x) | (x, y) ∈ A}, inverse of A,

A ◦ B := { (x, z) | ∃y.(x, y) ∈ B ∧ (y, z) ∈ A} composition of A, B.

Without any difficulty we can introduce the usual notions concerning
relations and functions. For classes A, B and C we define

(a) A is a relation iff A ⊆ V ×V . Hence a relation is a class of pairs. Instead
of (a, b) ∈ A we also write aAb.

(b) A is a relation on B iff A ⊆ B × B.
(c) A is a function iff A is a relation and

∀x, y, z.(x, y) ∈ A → (x, z) ∈ A → y = z.

(d) A : B → C iff A is a function such that dom(A) = B and A[B] ⊆ C. We
then call A a function from B to C.

(e) A : B →onto C iff A : B → C and A[B] = C. We then call A a surjective
function from B onto C.

(f) A is injective iff A and A−1 are functions.
(g) A : B ↔ C iff A : B →onto C and A is injective. Then A is called bijective

function from B onto C.

For the further development of set theory more axioms are necessary, in
particular

Axiom (Union).
⋃

x is a set.

2. AXIOMATIC SET THEORY 95

The union axiom holds in the cumulative type structure. To see this,
consider a level S where x is formed. An arbitrary element v ∈ x then is
available at an earlier level Sv already. Similarly every element u ∈ v is
present at a level Sv,u before Sv. But all these u make up

⋃
x. Hence also

⋃
x can be formed at level S.
Explicitely the union axiom is ∀x∃y∀z.z ∈ y ↔ ∃u.u ∈ x ∧ z ∈ u.
We now can extend the previous definition by

A(x) :=
⋃

{ y | (x, y) ∈ A} application.

If A is a function and (x, y) ∈ A, then A(x) =
⋃{y} = y and we write

A : x 7→ y.

2.3. Separation, Power Set, Replacement Axioms.

Axiom (Separation). For every class A,

A ⊆ x → ∃y (A = y).

So the separation scheme says that every subclass A of a set x is a set.
It is valid in the cumulative type structure, since on the same level where x
is formed we can also form the set y, whose elements are just the elements
of the class A.

Notice that the separation scheme consists of infinitely many axioms.

Axiom (Power set).
P(x) is a set.

The power set axiom holds in the cumulative type structure. To see
this, consider a level S where x is formed. Then also every subset y ⊆ x has
been formed at level S. On the next level S′ (which exists by the Shoenfield
principle) we can form P(x).

Explicitely the power set axiom is ∀x∃y∀z.z ∈ y ↔ z ⊆ x.

Lemma 2.1. a × b is a set.

Proof. We show a × b ⊆ P(P(a ∪ b)). So let x ∈ a and y ∈ b. Then

{x}, {x, y} ⊆ a ∪ b

{x}, {x, y} ∈ P(a ∪ b)

{ {x}, {x, y} } ⊆ P(a ∪ b)

(x, y) = { {x}, {x, y} } ∈ P(P(a ∪ b))

The claim now follows from the union axiom, the pairing axiom, the power
set axiom and the separation scheme. ¤

Axiom (Replacement). For every class A,

A is a function → ∀x (A[x] is a set).

Also the replacement scheme holds in the cumulative type structure;
however, this requires some more thought. Consider all elements u of the
set x∩dom(A). For every such u we know that A(u) is a set, hence is formed
at a level Su of the cumulative type structure. Because x∩ dom(A) is a set,
we can imagine a situation where all Su for u ∈ x∩dom(A) are constructed.
Hence by the Shoenfield principle there must be a level S coming after all
these Su. In S we can form A[x].

96 5. SET THEORY

Lemma 2.2. The replacement scheme implies the separation scheme.

Proof. Let A ⊆ x and B := { (u, v) | u = v ∧ u ∈ A}. Then B is a
function and we have B[x] = A. ¤

This does not yet conclude our list of axioms of set theory: later we will
require the infinity axiom, the regularity axiom and the axiom of choice.

3. Recursion, Induction, Ordinals

We want to develop a general framework for recursive definitions and
inductive proofs. Both will be done by means of so-called well-founded
relations. To carry this through, we introduce as an auxiliary notion that of
a transitively well-founded relation; later we will see that it is equivalent to
the notion of a well-founded relation. We then define the natural numbers in
the framework of set theory, and will obtain induction and recursion on the
natural numbers as special cases of the corresponding general theorems for
transitively well-founded relations. By recursion on natural numbers we can
then define the transitive closure of a set, and by means of this notion we
will be able to show that well-founded relations coincide with the transitively
well-founded relations.

Then we study particular well-founded relations. We first show that
arbitrary classes together with the ∈-relation are up to isomorphism the
only well-founded extensional relations (Isomorphy Theorem of Mostowski).
Then we consider linear well-founded orderings, called well-orderings. Since
they will always be extensional, they must be isomorphic to certain classes
with the ∈-relation, which will be called ordinal classes. Ordinals can then
be defined as those ordinal classes that happen to be sets.

3.1. Recursion on Transitively Well-Founded Relations. Let A,
B, C denote classes. For an arbitrary relation R on A we define

(a) x̂R := { y | yRx } is the class of R-predecessors of x. We shall write x̂
instead of x̂R, if R is clear from the context.

(b) B ⊆ A is called R-transitive if

∀x.x ∈ B → x̂ ⊆ B.

Hence B ⊆ A is R-transitive iff yRx and x ∈ B imply y ∈ B.
(c) Let B ⊆ A. x ∈ B is an R-minimal element of B if x̂ ∩ B = ∅.
(d) R is a transitively well-founded relation on A if

(i) Every nonempty subset of A has an R-minimal element, i.e.

∀a.a ⊆ A → a 6= ∅ → ∃x.x ∈ a ∧ x̂ ∩ a = ∅.
(ii) For every x ∈ A there is an R-transitive set b ⊆ A such that x̂ ⊆ b.

We shall almost everywhere omit R, if R is clear from the context.

Remark. Let R be a relation on A. R is a transitive relation on A if
for all x, y, z ∈ A

xRy → yRz → xRz.

We have the following connection to the notion of R-transitivity for classes:
Let R be a relation on A. Then

R is a transitive relation on A ↔ for every y ∈ A, ŷ is R-transitive.

3. RECURSION, INDUCTION, ORDINALS 97

Proof. →. Let R be a transitive relation on A, y ∈ A and x ∈ ŷ,
hence xRy. We must show x̂ ⊆ ŷ. So let zRx. We must show zRy. But
this follows from the transitivity of R. ←. Let x, y, z ∈ A, xRy and yRz.
We must show xRz. We have xRy and y ∈ ẑ. Since ẑ is R-transitive, we
obtain x ∈ ẑ, hence xRz. ¤

Lemma 3.1. Let R be a transitively well-founded relation on A. Then

(a) Every nonempty subclass B ⊆ A has an R-minimal element.
(b) ∀x.x∈A → x̂ is a set.

Proof. (a). Let B ⊆ A and z ∈ B. We may assume that z is not
B-minimal, i.e. ẑ ∩ B 6= ∅. By part (ii) of the definition of transitively well-
founded relations there exists an R-transitive superset b ⊆ A of ẑ. Because
of ẑ∩B 6= ∅ we have b∩B 6= ∅. By part (i) of the same definition there exists
an R-minimal x ∈ b ∩ B, i.e., x̂ ∩ b ∩ B = ∅. Since b is R-transitive, from
x ∈ b we obtain x̂ ⊆ b. Therefore x̂ ∩ B = ∅ and hence x is an R-minimal
element of B.

(b). This is a consequence of the separation scheme. ¤

3.2. Induction and Recursion Theorems. We write ∀x∈A . . . for
∀x.x ∈ A → . . . and similarly ∃x∈A . . . for ∃x.x ∈ A ∧

Theorem 3.2 (Induction Theorem). Let R be a transitively well-founded
relation on A and B an arbitrary class. Then

∀x∈A.x̂ ⊆ B → x ∈ B
implies A ⊆ B.

Proof. Assume A \ B 6= ∅. Let x be a minimal element of A \ B. It
suffices to show x̂ ⊆ B, for then by assumption we obtain x ∈ B, hence a
contradiction. Let z ∈ x̂. By the choice of x we have z /∈ A\B, hence z ∈ B
(because z ∈ A holds, since R is a relation on A). ¤

Theorem 3.3 (Recursion Theorem). Let R be a transitively well-founded
relation on A and G : V → V . Then there exists exactly one function
F : A → V such that

∀x∈A
(
F(x) = G(F¹x̂)

)
.

Proof. First observe that for F : A → V we have F¹x̂ ⊆ x̂ × F [x̂],
hence F¹x̂ is a set.

Uniqueness. Given F1, F2. Consider

{x | x ∈ A ∧ F1(x) = F2(x) } =: B.

By the Induction Theorem it suffices to show ∀x∈A.x̂ ⊆ B → x ∈ B. So let
x ∈ A and x̂ ⊆ B. Then

F1¹x̂ = F2¹x̂

G (F1¹x̂) = G (F2¹x̂)

F1(x) = F2(x)

x ∈ B.

98 5. SET THEORY

Existence. Let

B := { f | f function, dom(f) R-transitive subset of A,

∀x∈dom(f) (f(x) = G(f¹x̂)) }
and

F :=
⋃

B.

We first show that

f, g ∈ B → x ∈ dom(f) ∩ dom(g) → f(x) = g(x).

So let f, g ∈ B. We prove the claim by induction on x, i.e., by an application
of the Induction Theorem to

{x | x ∈ dom(f) ∩ dom(g) → f(x) = g(x) }.
So let x ∈ dom(f) ∩ dom(g). Then

x̂ ⊆ dom(f) ∩ dom(g), for dom(f), dom(g) are R-transitive

f¹x̂ = g¹x̂ by IH

G (f¹x̂) = G (g¹x̂)

f(x) = g(x).

Therefore F is a function. Now this immediately implies f ∈ B → x ∈
dom(f) → F(x) = f(x); hence we have shown

(40) F(x) = G (F¹x̂) for all x ∈ dom(F).

We now show

dom(F) = A.

⊆ is clear. ⊇. Use the Induction Theorem. Let ŷ ⊆ dom(F). We must show
y ∈ dom(F). This is proved indirectly; so assume y /∈ dom(F). Let b be
R-transitive such that ŷ ⊆ b ⊆ A. Define

g := F¹b ∪ { (y,G(F¹ŷ)) }.
It clearly suffices to show g ∈ B, for because of y ∈ dom(g) this implies
y ∈ dom(F) and hence the desired contradiction.

g is a function: This is clear, since y /∈ dom(F) by assumption.
dom(g) is R-transitive: We have dom(g) = (b ∩ dom(F)) ∪ {y}. First

notice that dom(F) as a union of R-transitive sets is R-transitive itself.
Moreover, since b is R-transitive, also b ∩ dom(F) is R-transitive. Now let
zRx and x ∈ dom(g). We must show z ∈ dom(g). In case x ∈ b ∩ dom(F)
also z ∈ b∩ dom(F) (since b∩ dom(F) is R-transitive, as we just observed),
hence z ∈ dom(g). In case x = y we have z ∈ ŷ, hence z ∈ b and z ∈ dom(F)
be the choice of b and y, hence again z ∈ dom(g).

∀x∈dom(g)
(
g(x) = G(g¹x̂)

)
: In case x ∈ b ∩ dom(F) we have

g(x) = F(x)

= G(F¹x̂) by (40)

= G(g¹x̂) since x̂ ⊆ b ∩ dom(F), for b ∩ dom(F) is R-transitive.

In case x = y is g(x) = G(F¹x̂) = G(g¹x̂), for x̂ = ŷ ⊆ b ∩ dom(F) by the
choice of y. ¤

3. RECURSION, INDUCTION, ORDINALS 99

3.3. Natural Numbers. Zermelo defined the natural numbers within
set theory as follows: 0 = ∅, 1 = {∅}, 2 = {{∅}}, 3 = {{{∅}}} and so
on. A disadvantage of this definition is that it cannot be generalized to the
transfinite. Later, John von Neumann proposed to represent the number n
by a certain set consisting of exactly n elements, namely

n := { 0, 1, . . . , n − 1 }.
So 0 = ∅ and n + 1 = { 0, 1, . . . , n } = { 0, 1, . . . , n− 1 } ∪ {n}. Generally we
define

0 := ∅, x + 1 := x ∪ {x}.
In particular, 1 := 0 + 1, 2 := 1 + 1, 3 := 2 + 1 and so on.

In order to know that the class of all natural numbers constructed in
this way is a set, we need another axiom:

Axiom (Infinity).

∃x.∅ ∈ x ∧ ∀y.y ∈ x → y ∪ {y} ∈ x.

The Infinity Axiom holds in the cumulative type structure. To see this,
observe that 0 = ∅, 1 := ∅ ∪ {∅}, 2 := 1∪ {1} and so on are formed at levels
S0, S1, S2 . . . , and we can conceive a situation where all these levels are
completed. By the Shoenfield principle there must be a level - call it Sω -
which is past all these levels. At Sω we can form ω.

We call a class A inductive if

∅ ∈ A ∧ ∀y.y ∈ A → y ∪ {y} ∈ A.

So the infinity axiom says that there is an inductive set. Define

ω :=
⋂

{x | x is inductive }.
Clearly ω is a set, with the properties 0 ∈ ω and y ∈ ω → y + 1 ∈ ω. ω is
called the set of natural numbers.

Let n, m denote natural numbers. ∀n A(n) is short for ∀x.x ∈ ω → A(x),
similarly ∃n A(n) for ∃x.x ∈ ω∧A(x) and {n | A(n) } for {x | x ∈ ω∧A(x) }.

Theorem 3.4 (Induction on ω).

(a) x ⊆ ω → 0 ∈ x → (∀n.n ∈ x → n + 1 ∈ x) → x = ω.
(b) For every formula A(x),

A(0) → (∀n.A(n) → A(n + 1)) → ∀nA(n).

Proof. (a). x is inductive, hence ω ⊆ x. (b). Let A := {n | A(n) }.
Then A ⊆ ω (so A is set), and by assumption

0 ∈ A,

n ∈ A → n + 1 ∈ A.

By (a), A = ω. ¤

We now show that for natural numbers the relation ∈ has all the prop-
erties of <, and the relation ⊆ all the properties of ≤.

A class A is called transitive if it is E-transitive w.r.t. the special relation
E := { (x, y) | x ∈ y } on V , i.e., if ∀x.x ∈ A → x ⊆ A. Therefore A is
transitive iff

y ∈ x ∈ A → y ∈ A.

100 5. SET THEORY

Lemma 3.5. (a) n is transitive.
(b) ω is transitive.

Proof. (a). Induction by n. 0 is transitive. n → n + 1. By IH, n is
transitive. We must show that n + 1 is transitive. We argue as follows:

y ∈ x ∈ n + 1

y ∈ x ∈ n ∪ {n}
y ∈ x ∈ n ∨ y ∈ x = n

y ∈ n ∨ y ∈ n

y ∈ n ∪ {n} = n + 1.

(b). We show ∀x.x ∈ n → x ∈ ω, by induction on n. 0: Clear. n → n+1.
By IH we have ∀x.x ∈ n → x ∈ ω. So assume x ∈ n+1. Then x ∈ n∨x = n,
hence x ∈ ω. ¤

Lemma 3.6. n /∈ n.

Proof. Induction on n. 0. Clear. n → n + 1: By IH is n /∈ n. Assume

n + 1 ∈ n + 1

n + 1 ∈ n ∨ n + 1 = n

n ∈ n + 1 ∈ n ∨ n ∈ n + 1 = n

n ∈ n for n is transitive by Lemma 3.5.

This is a contradiction to the IH. ¤

Lemma 3.7. (a) n ⊆ m + 1 ↔ n ⊆ m ∨ n = m + 1.
(b) n ⊆ m ↔ n ∈ m ∨ n = m.
(c) n ⊆ m ∨ m ⊆ n.
(d) n ∈ m ∨ n = m ∨ m ∈ n.

Proof. (a). ← follows from m ⊆ m + 1. →. Assume n ⊆ m + 1. Case

m ∈ n. We show n = m + 1. ⊆ holds by assumption. ⊇.

p ∈ m + 1

p ∈ m ∨ p = m

p ∈ n.

Case m /∈ n. We show n ⊆ m.

p ∈ n

p ∈ m + 1

p ∈ m ∨ p = m,

but p = m is impossible because of m /∈ n.
(b). ← follows from transitivity of m. →. Induction on m. 0. Clear.

m → m + 1.

n ⊆ m + 1

n ⊆ m ∨ n = m + 1 by (a)

n ∈ m ∨ n = m ∨ n = m + 1 by IH

n ∈ m + 1 ∨ n = m + 1.

3. RECURSION, INDUCTION, ORDINALS 101

(c). Induction on n. 0. Clear. n → n + 1: Case m ⊆ n. Clear. Case

n ⊆ m. Then

n ∈ m ∨ n = m by (b)

n, {n} ⊆ m ∨ m ⊆ n + 1

n + 1 ⊆ m ∨ m ⊆ n + 1

(d). Follows from (c) and (b). ¤

Theorem 3.8 (Peano-Axioms). (a) n + 1 6= ∅.
(b) n + 1 = m + 1 → n = m.
(c) x ⊆ ω → 0 ∈ x → (∀n.n ∈ x → n + 1 ∈ x) → x = ω.

Proof. (a). Clear. (c). This is Theorem 3.4(a). (b).

n + 1 = m + 1

n ∈ m + 1 ∧ m ∈ n + 1

(n ∈ m ∧ m ∈ n) ∨ n = m

n ∈ n ∨ n = m

n = m.

This concludes the proof. ¤

We now treat different forms of induction.

Theorem 3.9 (Course-of-values induction on ω).

(a) x ⊆ ω → [∀n.(∀m.m ∈ n → m ∈ x) → n ∈ x] → x = ω.
(b) [∀n.(∀m.m ∈ n → A(m)) → A(n)] → ∀nA(n).

Proof. (b). Assume ∀n.(∀m.m ∈ n → A(m)) → A(n); we shall say
in this case that A(n) is progressive. We show ∀m.m ∈ n → A(m), by
induction on n. 0. Clear. n → n + 1. By IH ∀m.m ∈ n → A(m). So let
m ∈ n + 1. Then m ∈ n ∨ m = n. In case m ∈ n we obtain A(m) by IH,
and in case m = n we can infer A(n) from the progressiveness of A, using
the IH.

(a). From (b), with A(y) := y ∈ x. ¤

Theorem 3.10 (Principle of least element for ω).

(a) ∅ 6= x ⊆ ω → ∃n.n ∈ x ∧ n ∩ x = ∅.
(b) ∃nA(n) → ∃n.A(n) ∧ ¬∃m.m ∈ n ∧ A(m).

Proof. (b). By Theorem 3.9(b)

[∀n.(∀m.m ∈ n → ¬A(m)) → ¬A(n)] → ∀n¬A(n).

Contraposition gives

∃nA(n) → ∃n.A(n) ∧ ∀m.m ∈ n → ¬A(m)

∃nA(n) → ∃n.A(n) ∧ ¬∃m.m ∈ n ∧ A(m).

(a). From (b), using A(y) := y ∈ x. ¤

We now consider recursion on natural numbers, which can be treated as
a special case of the Recursion Theorem 3.3. To this end, we identify ∈ with
the relation E = { (x, y) | x ∈ y } and prove the following lemma:

Lemma 3.11. ∈ ∩(ω × ω) is a transitively well-founded relation on ω.

102 5. SET THEORY

Proof. We show both conditions, from the definition of transitively
well-founded relations. (i). Let ∅ 6= a ⊆ ω. We must show ∃n.n ∈ a∧n∩a =
∅. But this is the above principle of the least element. (ii). Clear, since n is
transitive. ¤

Theorem 3.12 (Course-of-values recursion on ω). Let G : V → V . Then
there is exactly one function f : ω → V such that

∀n (f(n) = G(f¹n)).

Proof. By the Recursion Theorem 3.3 there is a unique F : ω → V
such that ∀n (F(n) = G(F¹n)). By Replacement, rng(F) = F [ω] is a set.
By Lemma 2.1 and Separation, also F ⊆ ω ×F [ω] is a set. ¤

Corollary 3.13. Let G : V → V and a be a set. Then there is exactly
one function f : ω → V such that

f(0) = a,

∀n (f(n + 1) = G(f(n))).

Proof. First observe that
⋃

(n + 1) = n, because of

x ∈
⋃

(n + 1) ↔ ∃y.x ∈ y ∈ n + 1

↔ ∃m.x ∈ m ∈ n + 1

↔ ∃m.x ∈ m ⊆ n

↔ x ∈ n.

For the given G we will construct G′ such that G′(f¹n + 1) = G(f(n)). We
define a function G′ : V → V satisfying

G′(x) =

{

G(x(
⋃

dom(x))), if x 6= ∅;
a, if x = ∅,

by

G′ = { (x, y) | (x 6= ∅ → y = G(x
⋃

dom(x))) ∧ (x = ∅ → y = a) }.
Then there is a unique function f : ω → V such that

f(n + 1) = G′(f¹n + 1)

= G((f¹n + 1)(
⋃

(n + 1)
︸ ︷︷ ︸

n

))

= G(f(n)),

f(0) = G′(f¹0
︸︷︷︸

∅

)

= a.

This concludes the proof. ¤

We now define

sm(0) = m, sm(n + 1) = sm(n) + 1.

3. RECURSION, INDUCTION, ORDINALS 103

By Corollary 3.13 for every m there is such a function, and it is uniquely
determined. We define

m + n := sm(n).

Because of sm(1) = sm(0+1) = sm(0)+1 = m+1, for n = 1 this definition
is compatible with the previous terminology. Moreover, we have m + 0 = m
and m + (n + 1) = (m + n) + 1.

Lemma 3.14. (a) m + n ∈ ω.
(b) (m + n) + p = m + (n + p).
(c) m + n = n + m.

Proof. (a). Induction on n. 0. Clear. n → n + 1. m + (n + 1) =
(m + n) + 1, and by IH m + n ∈ ω.

(b). Induction on p. 0. Clear. p → p + 1.

(m + n) + (p + 1) = [(m + n) + p] + 1 by definition

= [m + (n + p)] + 1 by IH

= m + [(n + p) + 1]

= m + [n + (p + 1)].

(c). We first prove two auxiliary propositions.
(i) 0 + n = n. The proof is by induction on n. 0. Clear. n → n + 1.

0 + (n + 1) = (0 + n) + 1 = n + 1.
(ii) (m + 1) + n = (m + n) + 1. Again the proof is by induction on n. 0.

Clear. n → n + 1.

(m + 1) + (n + 1) = [(m + 1) + n] + 1

= [(m + n) + 1] + 1 by IH

= [m + (n + 1)] + 1.

Now the claim m + n = n + m con be proved by induction on m. 0. By
(i). Step m → m + 1.

(m + 1) + n = (m + n) + 1 by (ii)

= (n + m) + 1 by IH

= n + (m + 1).

This concludes the proof ¤

We define
pm(0) = 0, pm(n + 1) = pm(n) + m.

By Corollary 3.13 for every m there is a unique such function. Here we need

G : V → V,

G(x) =

{

x + m, if x ∈ ω;

∅, otherwise.

We finally define m · n := pm(n). Observe that this implies m · 0 = 0,
m · (n + 1) = m · n + m.

Lemma 3.15. (a) m · n ∈ ω.
(b) m · (n + p) = m · n + m · p.
(c) (n + p) · m = n · m + p · m.

104 5. SET THEORY

(d) (m · n) · p = m · (n · p).
(e) 0 · n = 0, 1 · n = n, m · n = n · m.

Proof. Exercise. ¤

Remark. nm, m − n can be treated similarly; later (when we deal
with ordinal arithmetic) this will be done more generally. - We could now
introduce the integers, rationals, reals and complex numbers in the well-
known way, and prove their elementary properties.

3.4. Transitive Closure. We define the R-transitive closure of a set a,
w.r.t. a relation R with the property that the R-predecessors of an arbitrary
element of its domain form a set.

Theorem 3.16. Let R be a relation on A such that x̂R (:= { y | yRx })
is a set, for every x ∈ A. Then for every subset a ⊆ A there is a uniquely
determined set b such that

(a) a ⊆ b ⊆ A;
(b) b is R-transitive;
(c) ∀c.a ⊆ c ⊆ A → c R-transitive → b ⊆ c.

b is called the R-transitive closure of a.

Proof. Uniqueness. Clear by (c). Existence. We shall define f : ω → V
by recursion on ω, such that

f(0) = a,

f(n + 1) = { y | ∃x∈f(n)(yRx) }.
In order to apply the Recursion Theorem for ω, we must define f(n + 1) in
the form G(f(n)). To this end choose G : V → V , z 7→ ⋃

rng(H¹z) such that
H : V → V , x 7→ x̂; by assumption H is a function. Then

y ∈ G(f(n)) ↔ y ∈
⋃

rng(H¹f(n))

↔ ∃z.z ∈ rng(H¹f(n)) ∧ y ∈ z

↔ ∃z, x.x ∈ f(n) ∧ z = x̂ ∧ y ∈ z

↔ ∃x.x ∈ f(n) ∧ yRx.

By induction on n one can see easily that f(n) is a set. For 0 this is clear,
and in the step n → n + 1 it follows - using f(n + 1) =

⋃{ x̂ | x ∈ f(n) }
- from the IH, Replacement and the Union Axiom. – We now define b :=
⋃

rng(f) =
⋃{ f(n) | n ∈ ω }. Then

(a). a = f(0) ⊆ b ⊆ A.
(b).

yRx ∈ b

yRx ∈ f(n)

y ∈ f(n + 1)

y ∈ b.

(c). Let a ⊆ c ⊆ A and c be R-transitive. We show f(n) ⊆ c by
induction on n. 0. a ⊆ c. n → n + 1.

y ∈ f(n + 1)

3. RECURSION, INDUCTION, ORDINALS 105

yRx ∈ f(n)

yRx ∈ c

y ∈ c.

This concludes the proof. ¤

In the special case of the element relation ∈ on V , the condition ∀x(x̂ =
{ y | y ∈ x } is a set) clearly holds. Hence for every set a there is a uniquely
determined ∈-transitive closure of a. It is called the transitive closure of a.

By means of the notion of the R-transitive closure we can now show that
the transitively well-founded relations on A coincide with the well-founded
relations on A.

Let R be a relation on A. R is a well-founded relation on A if

(a) Every nonempty subset of A has an R-minimal element, i.e.,

∀a.a ⊆ A → a 6= ∅ → ∃x∈a.x̂ ∩ a = ∅;
(b) for every x ∈ A, x̂ is a set.

Theorem 3.17. The transitively well-founded relations on A are the
same as the well-founded relations on A.

Proof. Every transitively well-founded relation on A is well-founded by
Lemma 3.1(b). Conversely, every well-founded relation on A is transitively
well-founded, since for every x ∈ A, the R-transitive closure of x̂ is an
R-transitive b ⊆ A such that x̂ ⊆ b. ¤

Therefore, the Induction Theorem 3.2 and the Recursion Theorem 3.3
also hold for well-founded relations. Moreover, by Lemma 3.1(a), every
nonempty subclass of a well-founded relation R has an R-minimal element.

Later we will require the so-called Regularity Axiom, which says that
the relation ∈ on V is well-founded, i.e.,

∀a.a 6= ∅ → ∃x∈a.x ∩ a = ∅.
This will provide us with an important example of a well-founded relation.

We now consider extensional well-founded relations. From the Regular-
ity Axiom it will follow that the ∈-relation on an arbitrary class A is a well-
founded extensional relation. Here we show - even without the Regularity
Axiom - the converse, namely that every well-founded extensional relation
is isomorphic to the ∈-relation on a transitive class. This is Mostowski’s
Isomorphy Theorem. Then we consider linear well-founded orderings, well-
orderings for short. They are always extensional, and hence isomorphic to
the ∈-relation on certain classes, which will be called ordinal classes. Ordi-
nals will then be defined as ordinal sets.

A relation R on A is extensional if for all x, y ∈ A
(∀z∈A.zRx ↔ zRy) → x = y.

For example, for a transitive class A the relation ∈ ∩(A×A) is extensional
on A. This can be seen as follows. Let x, y ∈ A. For R :=∈ ∩(A × A) we
have zRx ↔ z ∈ x, since A is transitive. We obtain

∀z∈A.zRx ↔ zRy

∀z.z ∈ x ↔ z ∈ y

106 5. SET THEORY

x = y

From the Regularity Axiom it will follows that all these relations are
well-founded. But even without the Regularity Axiom these relations have
a distinguished meaning; cf. Corollary 3.19.

Theorem 3.18 (Isomorphy Theorem of Mostowski). Let R be a well-
founded extensional relation on A. Then there is a unique isomorphism F
of A onto a transitive class B, i.e.

∃=1F .F : A ↔ rng(F) ∧ rng(F) transitive ∧ ∀x, y∈A.yRx ↔ F(y) ∈ F(x).

Proof. Existence. We define by the Recursion Theorem

F : A → V,

F(x) = rng(F¹x̂) (= {F(y) | yRx }).
F injective: We show ∀x, y∈A.F(x) = F(y) → x = y by R-induction

on x. So let x, y ∈ A be given such that F(x) = F(y). By IH

∀z∈A.zRx → ∀u∈A.F(z) = F(u) → z = u.

It suffices to show zRx ↔ zRy, for all z ∈ A. →.

zRx

F(z) ∈ F(x) = F(y) = {F(u) | uRy }
F(z) = F(u) for some uRy

z = u by IH, since zRx

zRy

←.

zRy

F(z) ∈ F(y) = F(x) = {F(u) | uRx }
F(z) = F(u) for some uRx

z = u by IH, since uRx

zRx.

rng(F) is transitive: Assume u ∈ v ∈ rng(F). Then v = F(x) for some
x ∈ A, hence u = F(y) for some yRx.

yRx ↔ F(y) ∈ F(x): →. Assume yRx. Then F(y) ∈ F(x) by definition
of F . ←.

F(y) ∈ F(x) = {F(z) | zRx }
F(y) = F(z) for some zRx

y = z since F is injective

yRx.

Uniqueness. Let Fi (i = 1, 2) be two isomorphisms as described in
the theorem. We show ∀x∈A (F1(x) = F2(x)), by R-induction on x. By
symmetry it suffices to prove u ∈ F1(x) → u ∈ F2(x).

u ∈ F1(x)

u = F1(y) for some y ∈ A, since rng(F1) is transitive

3. RECURSION, INDUCTION, ORDINALS 107

yRx by the isomorphy condition for F1

u = F2(y) by IH

F2(y) ∈ F2(x) by the isomorphy condition for F2

u ∈ F2(x).

This concludes the proof. ¤

A relation R on A is a linear ordering if for all x, y, z ∈ A
¬xRx irreflexivity,

xRy → yRz → xRz transitivity,

xRy ∨ x = y ∨ yRx trichotomy (or compatibility).

R is a well-ordering if R is a well-founded linear ordering.

Remark. Every well-ordering R on A is extensional. To see this, assume

∀z∈A.zRx ↔ zRy.

Then x = y by trichotomy, since from xRy we obtain by assumption xRx,
contradicting irreflexivity, and similarly yRx entails a contradiction.

Corollary 3.19. For every well-ordering R on A there is a unique
isomorphism F of A onto a transitive class B.

3.5. Ordinal classes and ordinals. We now study more closely the
transitive classes that appear as images of well-orderings.

A is an ordinal class if A is transitive and ∈ ∩(A×A) is a well-ordering
on A. Ordinal classes that happen to be sets are called ordinals. Define

On := {x | x is an ordinal }.
First we give a convenient characterization of ordinal classes. A is called

connex if for all x, y ∈ A
x ∈ y ∨ x = y ∨ y ∈ x.

For instance, ω is connex by Lemma 3.7(d). Also every n is connex, since
by Lemma 3.5(b), ω is transitive.

A class A is well-founded if ∈ ∩(A×A) is a well-founded relation on A,
i.e., if

∀a.a ⊆ A → a 6= ∅ → ∃x∈a.x ∩ a = ∅.
We now show that in well-founded classes there can be no finite ∈-cycles.

Lemma 3.20. Let A be well-founded. Then for arbitrary x1, . . . , xn ∈ A
we can never have

x1 ∈ x2 ∈ · · · ∈ xn ∈ x1.

Proof. Assume x1 ∈ x2 ∈ · · · ∈ xn ∈ x1. Consider {x1, . . . , xn}. Since
A is well-founded we may assume x1∩{x1, . . . , xn} = ∅. But this contradicts
xn ∈ x1. ¤

Corollary 3.21. A is an ordinal class iff A is transitive, connex and
well-founded.

108 5. SET THEORY

Proof. → is clear; A is connex because of trichotomy. ←: We must
show, for all x, y, z ∈ A,

x /∈ x,

x ∈ y → y ∈ z → x ∈ z.

Since A is connex, both propositions follow from Lemma 3.20. ¤

Here are some examples of ordinals. ω is transitive by Lemma 3.5(b),
connex as noted above and well-founded by the principle of least element
(Theorem 3.10). So, ω is an ordinal class. Since ω by the Infinity Axiom is
a set, ω is even an ordinal. Also, n is transitive by Lemma 3.5(a), connex
(see above) and well-founded; the latter follows with transitivity of ω by the
principle of least element (Theorem 3.10).

Let us write Ord(A) for “A is an ordinal class”. We now show that
ordinal classes have properties similar to those of natural numbers: the
relation ∈ has the properties of <, and the relation ⊆ has the properties of
≤.

Lemma 3.22. (a) Ord(A) → Ord(B) → Ord(A ∩ B).
(b) Ord(A) → x ∈ A → Ord(x).
(c) Ord(A) → Ord(B) → (A ⊆ B ↔ A ∈ B ∨ A = B).
(d) Ord(A) → Ord(B) → (A ∈ B ∨ A = B ∨ B ∈ A).

Proof. (a). A ∩ B transitive:

x ∈ y ∈ A ∩ B
x ∈ y ∈ A and x ∈ y ∈ B
x ∈ A and x ∈ B
x ∈ A ∩ B.

A ∩ B connex, well-founded: Clear.
(b). x transitive:

u ∈ v ∈ x ∈ A
u ∈ v ∈ A
u ∈ A
u ∈ x ∨ u = x ∨ x ∈ u.

From u = x it follows that u ∈ v ∈ u contradicting Lemma 3.20, and from
x ∈ u it follows that u ∈ v ∈ x ∈ u, again contradicting Lemma 3.20.

x connex, well-founded. Clear, for x ⊆ A.
(c). ←. Clear, for B is transitive. →. Let A ⊆ B. Wlog A (B. Choose

x ∈ B\A such that x∩(B\A) = ∅ (this is possible, since B is well-founded);
it suffices to show that x = A.

x ⊆ A. Assume y ∈ x, hence y ∈ x ∈ B. Then y ∈ A, for x∩(B\A) = ∅.
A ⊆ x. Assume y ∈ A. Then also y ∈ B. It follows that x ∈ y ∨ x =

y ∨ y ∈ x. But the first two cases are impossible, for in both of them we
obtain x ∈ A.

(d). Assume Ord(A) and Ord(B). Then by (a), Ord(A ∩ B). Using (c)
we obtain

[(A ∩ B ∈ A) ∨ (A ∩ B = A)] ∧ [(A ∩ B ∈ B) ∨ (A ∩ B = B)].

3. RECURSION, INDUCTION, ORDINALS 109

Distributing yields

(A ∩ B ∈ A ∩ B) ∨ (A ∈ B) ∨ (B ∈ A) ∨ (A = B).

But the first case A ∩ B ∈ A ∩ B is impossible by Lemma 3.20. ¤

Lemma 3.23. (a) Ord(On).
(b) On is not a set.
(c) On is the only proper ordinal class.

Proof. (a). On is transitive by Lemma 3.22(b) and it is connex by
Lemma 3.22(d). On is well-founded: Let a ⊆ On, a 6= ∅. Choose x ∈ a.
Wlog x ∩ a 6= ∅. Since x is well-founded, there is a y ∈ x ∩ a such that
y ∩ x ∩ a = ∅. It follows that y ∈ a and y ∩ a = ∅; the latter holds since
y ⊆ x because of y ∈ x, x transitive.

(b). Assume On is a set. Then On ∈ On, contradicting Lemma 3.20.
(c). Let Ord(A), A not a set. By Lemma 3.22(d)

A ∈ On ∨ A = On ∨ On ∈ A.

The first and the last case are excluded, for then A (or On, resp.) would be
a set. ¤

Lemma 3.24. (a) On is inductive,
(b) n, ω ∈ On.

Proof. (a). 0 ∈ On is clear. So let x ∈ On. We must show x + 1 ∈ On,
that is x ∪ {x} ∈ On.

x ∪ {x} transitive: Assume u ∈ v ∈ x ∪ {x}, so u ∈ v ∈ x or u ∈ v = x.
In both cases it follows that u ∈ x.

x ∪ {x} is connex: Assume u, v ∈ x ∪ {x}. Then

u, v ∈ x ∨ (u ∈ x ∧ v = x) ∨ (u = x ∧ v ∈ x) ∨ (u = v = x)

u ∈ v ∨ u = v ∨ v ∈ u.

x∪{x} is well-founded: Let a ⊆ x∪{x}, a 6= ∅. We must show ∃y∈a (y∩
a = ∅). Case a ∩ x 6= ∅. Then the claim follows from the well-foundedness
of x. Case a ∩ x = ∅. Then a = {x}, and we have x ∩ {x} = ∅.

(b). This has been proved above, after Corollary 3.21. ¤

Lemma 3.25. x, y ∈ On → x + 1 = y + 1 → x = y.

Proof. The proof is similar to the proof of the second Peano-Axiom in
Theorem 3.8(b).

x + 1 = y + 1

x ∈ y + 1 ∧ y ∈ x + 1

(x ∈ y ∧ y ∈ x) ∨ x = y.

Since the first case is impossible by Lemma 3.22, we have x = y. ¤

Lemma 3.26. A ⊆ On → ⋃A ∈ On ∨ ⋃A = On.

110 5. SET THEORY

Proof. It suffices to show Ord(
⋃A).

⋃A is transitive: Let x ∈ y ∈
⋃A, so x ∈ y ∈ z ∈ A for some z. Then we have x ∈ z ∈ A, since A ⊆ On.
Hence x ∈ ⋃A.

⋃A is connex and well-founded: It suffices to prove
⋃A ⊆ On. So

let x ∈ ⋃A, hence x ∈ y ∈ A for some y. Then x ∈ y and y ∈ On, so
x ∈ On. ¤

Remark. If A ⊆ On, then
⋃A is the least upper bound of A w.r.t. the

well-ordering ∈ ∩(On × On) of On, for by definition of
⋃A we have

x ∈ A → x ⊆
⋃

A,

(∀x∈A.x ⊆ y) →
⋃

A ⊆ y.

We therefore also write supA for
⋃A.

Here are some examples of ordinals:

0

1 = 0 + 1

2 = 1 + 1

...

ω set by the Infinity Axiom

ω + 1

ω + 2

...

ω · 2 :=
⋃

{ω + n | n ∈ ω } by recursion on ω

ω · 2 + 1

ω · 2 + 2

...

ω · 3 :=
⋃

{ω · 2 + n | n ∈ ω }
...

ω · 4
...

ω · ω := ω2 :=
⋃

{ω · n | n ∈ ω }
ω2 + 1

ω2 + 2

...

ω2 + ω

ω2 + ω + 1

ω2 + ω + 2

3. RECURSION, INDUCTION, ORDINALS 111

...

ω2 + ω · 2
...

ω2 + ω · 3
...

ω3

...

ω4

...

ωω

ωω + 1

...

and so on.

α, β, γ will denote ordinals.
α is a successor number if ∃β(α = β + 1). α is a limit if α is neither 0

nor a successor number. We write

Lim(α) for α 6= 0 ∧ ¬∃β(α = β + 1).

Clearly for arbitrary α either α = 0 or α is successor number or α is a limit.

Lemma 3.27. (a) Lim(α) ↔ α 6= 0 ∧ ∀β.β ∈ α → β + 1 ∈ α.
(b) Lim(ω).
(c) Lim(α) → ω ⊆ α.

Proof. (a). →: Let β ∈ α. Then β + 1 ∈ α ∨ β + 1 = α ∨ α ∈ β + 1.
The second case β + 1 = α is excluded assumption. In the third case it
follows that α ∈ β ∨ α = β; but because of β ∈ α both are impossible by
Lemma 3.20. ←. Let α 6= 0 and assume ∀β.β ∈ α → β + 1 ∈ α. Then if α
is not a limit, we must have α = β + 1. Then we obtain β ∈ α, hence by
assumption also β + 1 ∈ α and hence α ∈ α, which is impossible.

(b). Follows from (a), since ω is inductive.
(c). Assume Lim(α). We show n ∈ α by induction on n. 0. We have

0 ∈ α∨ 0 = α∨α ∈ 0, where the cases two and three clearly are impossible.
n + 1. We have n ∈ α by IH, hence n + 1 ∈ α by (a). ¤

Lemma 3.28. (a) α =
⋃

β∈α(β + 1).

(b) For limits α we have α =
⋃

β∈α β.

Proof. (a). ⊆. Let β ∈ α. The claim follows from β ∈ β + 1. ⊇. Let
β ∈ α. Then β + 1 ⊆ α.

(b). ⊆. Let γ ∈ α. Then γ ∈ γ + 1 ∈ α. ⊇. Let γ ∈ β ∈ α. We obtain
γ ∈ α. ¤

112 5. SET THEORY

Theorem 3.29 (Transfinite induction on On; class form).

(∀α.α ⊆ B → α ∈ B) → On ⊆ B.

Proof. This is a special case of the Induction Theorem 3.2 ¤

Corollary 3.30 (Different forms of transfinite induction on On). First
form:

A(0) → (∀α.A(α) → A(α + 1))

→ (∀α.Lim(α) → (∀β.β ∈ α → A(β)) → A(α))

→ ∀αA(α).

Second form: (Transfinite induction on On, using all predecessors).

[∀α.(∀β.β ∈ α → A(β)) → A(α)] → ∀αA(α).

Third form: (Principle of least element for On).

∃αA(α) → ∃α.A(α) ∧ ¬∃β.β ∈ α ∧ A(β).

Proof. The third form follows from the second by contraposition. Also,
the first form follows easily from the second. The second form follows from
Theorem 3.29 using B := {α | A(α) }. ¤

Theorem 3.31 (Transfinite recursion on On). Let G : V → V . Then
there is exactly one function F : On → V such that for all α

F(α) = G(F¹α).

Proof. This is a special case of the Recursion Theorem 3.3. ¤

Corollary 3.32. Assume G : V → V , H : V → V and a is a set. Then
there is a unique function F : On → V such that

F(0) = a,

F(α + 1) = G(F(α)),

F(α) = H(F¹α) for α limit.

Proof. First observe that
⋃

(α + 1) = α, because of

γ ∈
⋃

(α + 1) ↔ ∃β.γ ∈ β ∈ α + 1

↔ ∃β.γ ∈ β ⊆ α

↔ γ ∈ α.

For given a, G and H we shall find a G′ such that

G′(0) = a,

G′(F¹α + 1) = G(F(α)),

G′(F¹α) = H(F¹α) for α limit.

We define a function G′ : V → V by

G′(x) =

a, otherwise;

G(x(
⋃

dom(x))), if ∃β(dom(x) = β + 1);

H(x), if Lim(dom(x)).

3. RECURSION, INDUCTION, ORDINALS 113

By the Recursion Theorem 3.3 there is a unique F : On → V such that, for
all α,

F(α) = G′(F¹α).

Clearly this property of F is equivalent to the equations above. ¤

3.6. Regularity Axiom, Von Neumann Levels, Rank. Recall the
cumulative type structure:

Level 0: −
Level 1: ∅
Level 2: ∅, {∅}
Level 3: ∅, {∅}, {{∅}}, {∅, {∅}}

and so on.

Using ordinals we can now consider transfinite levels as well. The level ω
consists of all sets whose elements are formed on finite levels, and the level
ω+1 consists of all sets whose elements are formed on finite levels or at level
ω, and so on. Generally we define the Von Neumann levels Vα as follows,
by transfinite recursion on On.

V0 = ∅,
Vα+1 = P(Vα),

Vα =
⋃

β∈α

Vβ for α limit.

Remark. More precisely, Vα := F(α), where F : On → V is defined as
follows, by transfinite recursion on On:

F(0) = ∅,
F(α + 1) = P(F(α)),

F(α) =
⋃

rng(F¹α) for α limit.

Lemma 3.33. (a) Vα is transitive.
(b) α ∈ β → Vα ∈ Vβ.
(c) α ⊆ β → Vα ⊆ Vβ.
(d) Vα ∩ On = α.

Proof. (a). (Transfinite) induction by α. 0. ∅ is transitive. α + 1.

x ∈ y ∈ Vα+1 = P(Vα)

x ∈ y ⊆ Vα

x ∈ Vα

x ⊆ Vα by IH

x ∈ Vα+1.

α limit.

x ∈ y ∈ Vα =
⋃

β∈α

Vβ

x ∈ y ∈ Vβ for some β ∈ α

x ∈ Vβ by IH

114 5. SET THEORY

x ∈ Vα.

(b). Induction by β. 0. Clear. β + 1.

α ∈ β + 1

α ∈ β or α = β

Vα ∈ Vβ or Vα = Vβ by IH

Vα ⊆ Vβ by (a)

Vα ∈ Vβ+1.

β limit.

α ∈ β

α + 1 ∈ β

Vα ∈ Vα+1 ⊆
⋃

γ∈β

Vγ = Vβ .

(c). Using α ⊆ β ↔ α ∈ β ∨ α = β the claim follows from (a) and (b).
(d). Induction on α. 0. Clear. α + 1.

β ∈ Vα+1 ↔ β ⊆ Vα

↔ β ⊆ Vα ∩ On = α by IH

↔ β ∈ α + 1.

α limit.

Vα ∩ On = (
⋃

β∈α

Vβ) ∩ On

=
⋃

β∈α

(Vβ ∩ On)

=
⋃

β∈α

β by IH

= α.

This concludes the proof. ¤

We now show that the von Neumann levels exhaust the universe, which
means that V =

⋃

α∈On Vα. However, this requires another axiom, the
Regularity Axiom, which says that the relation ∈ on V is well-founded, i.e.,

Axiom (Regularity Axiom).

∀a.a 6= ∅ → ∃x∈a (x ∩ a = ∅).
We want to assign to every set x an ordinal α, namely the least α such

that x ⊆ Vα. To this end we need the notion of the rank rn(x) of a set x,
which is defined recursively by

rn(x) :=
⋃

{ rn(y) + 1 | y ∈ x }.
More precisely we define rn(x) := F(x), where F : V → V is defined as
follows (using the Recursion Theorem 3.3 for well-founded relations):

F(x) :=
⋃

rng(H(F¹x))

3. RECURSION, INDUCTION, ORDINALS 115

mit
H(z) := { (u, v + 1) | (u, v) ∈ z }.

We first show that rn(x) has the property formulated above.

Lemma 3.34. (a) rn(x) ∈ On.
(b) x ⊆ Vrn(x).
(c) x ⊆ Vα → rn(x) ⊆ α.

Proof. (a). ∈-induction on x. We have rn(x) =
⋃{ rn(y)+1 | y ∈ x } ∈

On, for by IH rn(y) ∈ On for every y ∈ x.
(b). ∈-induction on x. Let y ∈ x. Then y ⊆ Vrn(y) by IH, hence

y ∈ P(Vrn(y)) = Vrn(y)+1 ⊆ Vrn(x) because of rn(y) + 1 ⊆ rn(x).
(c). Induction on α. Let x ⊆ Vα. We must show rn(x) =

⋃{ rn(y) + 1 |
y ∈ x } ⊆ α. Let y ∈ x. We must show rn(y) + 1 ⊆ α. Because of x ⊆ Vα

we have y ∈ Vα. This implies y ⊆ Vβ for some β ∈ α, for in case α = α′ + 1
we have y ∈ Vα′+1 = P(V ′

α) and hence y ⊆ V ′
α, and in case α limit we have

y ∈ Vα =
⋃

β∈α Vβ , hence y ∈ Vβ and therefore y ⊆ Vβ for some β ∈ α. - By

IH it follows that rn(y) ⊆ β, whence rn(y) ∈ α. ¤

Now we obtain easily the proposition formulated above as our goal.

Corollary 3.35. V =
⋃

α∈On Vα.

Proof. ⊇ is clear. ⊆. For every x we have x ⊆ Vrn(x) by Lemma 3.34(b),
hence x ∈ Vrn(x)+1. ¤

Now Vα can be characterized as the set of all sets of rank less than α.

Lemma 3.36. Vα = {x | rn(x) ∈ α }.
Proof. ⊇. Let rn(x) ∈ α. Then x ⊆ Vrn(x) implies x ∈ Vrn(x)+1 ⊆ Vα.
⊆. Induction on α. Case 0. Clear. Case α + 1. Let x ∈ Vα+1. Then

x ∈ P(Vα), hence x ⊆ Vα. For every y ∈ x we have y ∈ Vα and hence rn(y) ∈
α by IH, so rn(y) + 1 ⊆ α. Therefore rn(x) =

⋃{ rn(y) + 1 | y ∈ x } ⊆ α.
Case α limit. Let x ∈ Vα. Then x ∈ Vβ for some β ∈ α, hence rn(x) ∈ β by
IH, hence rn(x) ∈ α. ¤

From x ∈ y and x ⊆ y, resp., we can infer the corresponding relations
between the ranks.

Lemma 3.37. (a) x ∈ y → rn(x) ∈ rn(y).
(b) x ⊆ y → rn(x) ⊆ rn(y).

Proof. (a). Because of rn(y) =
⋃{ rn(x) + 1 | x ∈ y } this is clear. (b).

For every z ∈ x we have rn(z) ∈ rn(y) by (a), hence rn(x) =
⋃{ rn(z) + 1 |

z ∈ x } ⊆ rn(y). ¤

Moreover we can show that the sets α and Vα both have rank α.

Lemma 3.38. (a) rn(α) = α.
(b) rn(Vα) = α.

Proof. (a). Induction on α. We have rn(α) =
⋃{ rn(β) + 1 | β ∈ α },

hence by IH rn(α) =
⋃{β + 1 | β ∈ α } = α by Lemma 3.28(a).

(b). We have

rn(Vα) =
⋃

{ rn(x) + 1 | x ∈ Vα }

116 5. SET THEORY

=
⋃

{ rn(x) + 1 | rn(x) ∈ α } by Lemma 3.36

⊆ α.

Conversely, let β ∈ α. By (a), rn(β) = β ∈ α, hence

β = rn(β) ∈
⋃

{ rn(x) + 1 | rn(x) ∈ α } = rn(Vα).

This completes the proof. ¤

We finally show that a class A is a set if and only if the ranks of their
elements can be bounded by an ordinal.

Lemma 3.39. A is set iff there is an α such that ∀y∈A (rn(y) ∈ α).

Proof. →. Let A = x. From Lemma 3.37(a) we obtain that rn(x) is
the α we need.

←. Assume rn(x) ∈ α for all y ∈ A. Then A ⊆ { y | rn(y) ∈ α } =
Vα. ¤

4. Cardinals

We now introduce cardinals and develop their basic properties.

4.1. Size Comparison Between Sets. Define

|a| ≤ |b| :↔ ∃f.f : a → b and f injective,

|a| = |b| :↔ ∃f.f : a ↔ b,

|a| < |b| :↔ |a| ≤ |b| ∧ |a| 6= |b|,
ba := { f | f : b → a }.

Two sets a and b are equinumerous if |a| = |b|. Notice that we did not define
|a|, but only the relations |a| ≤ |b|, |a| = |b| and |a| < |b|.

The following properties are clear:

|a × b| = |b × a|;
|a(bc)| = |a×bc|;
|P(a)| = |a{0, 1}|.

Theorem 4.1 (Cantor). |a| < |P(a)|.
Proof. Clearly f : a → P(a), x 7→ {x} is injective. Assume that we

have g : a ↔ P(a). Consider

b := {x | x ∈ a ∧ x /∈ g(x) }.
Then b ⊆ a, hence b = g(x0) for some x0 ∈ a. It follows that x0 ∈ g(x0) ↔
x0 /∈ g(x0) and hence a contradiction. ¤

Theorem 4.2 (Cantor, Bernstein). If a ⊆ b ⊆ c and |a| = |c|, then
|b| = |c|.

Proof. Let f : c → a be bijective and r := c \ b. We recursively define
g : ω → V by

g(0) = r,

g(n + 1) = f [g(n)].

4. CARDINALS 117

Let
r :=

⋃

n

g(n)

and define i : c → b by

i(x) :=

{

f(x), if x ∈ r,

x, if x /∈ r.

It suffices to show that (a) rng(i) = b and (b) i is injective. Ad (a). Let
x ∈ b. We must show x ∈ rng(i). Wlog let x ∈ r. Because of x ∈ b we then
have x /∈ g(0). Hence there is an n such that x ∈ g(n + 1) = f [g(n)], so
x = f(y) = i(y) for some y ∈ r. Ad (b). Let x 6= y. Wlog x ∈ r, y /∈ r. But
then i(x) ∈ r, i(y) /∈ r, hence i(x) 6= i(y). ¤

Remark. The Theorem of Cantor and Bernstein can be seen as an
application of the Fixed Point Theorem of Knaster-Tarski.

Corollary 4.3. |a| ≤ |b| → |b| ≤ |a| → |a| = |b|.
Proof. Let f : a → b and g : b → a injective. Then (g ◦ f)[a] ⊆ g[b] ⊆ a

and |(g ◦f)[a]| = |a|. By the Theorem of Cantor and Bernstein |b| = |g[b]| =
|a|. ¤

4.2. Cardinals, Aleph Function. A cardinal is defined to be an or-
dinal that is not equinumerous to a smaller ordinal:

α is a cardinal if ∀β<α (|β| 6= |α|).
Here and later we write - because of Lemma 3.22 - α < β for α ∈ β and
α ≤ β for α ⊆ β.

Lemma 4.4. |n| = |m| → n = m.

Proof. Induction on n. 0. Clear. n + 1. Let f : n + 1 ↔ m + 1. We
may assume f(n) = m. Hence f¹n : n ↔ m and therefore n = m by IH,
hence also n + 1 = m + 1. ¤

Corollary 4.5. n is a cardinal.

Lemma 4.6. |n| 6= |ω|.
Proof. Assume |n| = |ω|. Because of n ⊆ n + 1 ⊆ ω the Theorem of

Cantor and Bernstein implies |n| = |n + 1|, a contradiction. ¤

Corollary 4.7. ω is a cardinal.

Lemma 4.8. ω ≤ α → |α + 1| = |α|.
Proof. Define f : α → α + 1 by

f(x) :=

α, if x = 0;

n, if x = n + 1;

x, otherwise.

Then f : α ↔ α + 1. ¤

Corollary 4.9. If ω ≤ α and α is a cardinal, then α is a limit.

Proof. Assume α = β + 1. Then ω ≤ β < α, hence |β| = |β + 1|,
contradicting the assumption that α is a cardinal. ¤

118 5. SET THEORY

Lemma 4.10. If a is a set of cardinals, then sup(a) (:=
⋃

a) is a cardinal.

Proof. Otherwise there would be an α < sup(a) such that |α| =
| sup(a)|. Hence α ∈ ⋃

a and therefore α ∈ β ∈ a for some cardinal β.
By the Theorem of Cantor and Bernstein from α ⊆ β ⊆ ⋃

a and |α| = |⋃ a|
it follows that |α| = |β|. Because of α ∈ β and β a cardinal this is impossi-
ble. ¤

We now show that for every ordinal there is a strictly bigger cardinal.
More generally, even the following holds:

Theorem 4.11 (Hartogs).

∀a∃!α.∀β<α(|β| ≤ |a|) ∧ |α| 6≤ |a|.
α is the Hartogs number of a; it is denoted by H(a).

Proof. Uniqueness. Clear. Existence. Let w := { (b, r) | b ⊂ a ∧
r well-ordering on b } and γ(b,r) the uniquely determined ordinal isomorphic
to (b, r). Then { γ(b,r) | (b, r) ∈ w } is a transitive subset of On, hence an
ordinal α. We must show

(a) β < α → |β| ≤ |a|,
(b) |α| 6≤ |a|.
(a). Let β < α. Then β is isomorphic to a γ(b,r) with (b, r) ∈ w, hence there
exists an f : β ↔ b.

(b). Assume f : α → a is injective. Then α = γ(b,r) for some b ⊆ a
(b := rng(f)), hence α ∈ α, a contradiction. ¤

Remark. (a). The Hartogs number of a is a cardinal. For let α be the
Hartogs number of a, β < α. If |β| = |α|, we would have |α| = |β| ≤ |a|, a
contradiction.

(b). The Hartogs number of β is the least cardinal α such that α > β.

The aleph function ℵ : On → V is defined recursively by

ℵ0 := ω,

ℵα+1 := H(ℵα),

ℵα := sup{ℵβ | β < α } for α limit.

Lemma 4.12 (Properties of ℵ). (a) ℵα is a cardinal.
(b) α < β → ℵα < ℵβ.
(c) ∀β.β cardinal → ω ≤ β → ∃α(β = ℵα).

Proof. (a). Induction on α; clear. (b). Induction on β. 0. Clear.
β + 1.

α < β + 1

α < β ∨ α = β

ℵα < ℵβ ∨ ℵα = ℵβ

ℵα < ℵβ+1.

β limit.

α < β

α < γ for some γ < β

4. CARDINALS 119

ℵα < ℵγ ≤ ℵβ.

(c). Let α be minimal such that β ≤ ℵα. Such an α exists, for otherwise
ℵ : On → β would be injective. We show ℵα ≤ β by cases on α. 0. Clear.
α = α′ + 1. By the choice of α we have ℵα′ < β, hence ℵα ≤ β. α limit.
By the choice of α we have ℵγ < β for all γ < α, hence ℵα = sup{ℵγ | γ <
α } ≤ β. ¤

We show that every infinite ordinal is equinumerous to a cardinal.

Lemma 4.13. (∀β≥ω)∃α(|β| = |ℵα|).
Proof. Consider δ := min{ γ | γ < β ∧ |γ| = |β| }. Clearly δ is a

cardinal. Moreover δ ≥ ω, for otherwise

δ = n

|n| = |β|
n ⊆ n + 1 ⊆ β

|n| = |n + 1|,
a contradiction. Hence δ = ℵα for some α, and therefore |δ| = |β| = |ℵα|. ¤

4.3. Products of Cardinals. We now show that |ℵα × ℵα| = |ℵα|.
On the set On × On we define a relation ≺ by

(α, β) ≺ (γ, δ) :↔max{α, β} < max{γ, δ} ∨
(max{α, β} = max{γ, δ} ∧ α < γ) ∨
(max{α, β} = max{γ, δ} ∧ α = γ ∧ β < δ).

Lemma 4.14. ≺ is a well-ordering on On × On.

Proof. Clearly ≺ is a linear ordering. To see the well-foundedness of
≺ consider an a ⊆ On × On such that a 6= ∅. Then

∅ 6= A := {α | ∃ρ, µ((ρ, µ) ∈ a ∧ max{ρ, µ} = α) } ⊆ On.

Let α0 := min(A). Then

∅ 6= A1 := { ρ | ∃µ((ρ, µ) ∈ a ∧ max{ρ, µ} = α0) } ⊆ On.

Let ρ0 := min(A1). Then

∅ 6= A2 := {µ | (ρ0, µ) ∈ a ∧ max{ρ0, µ} = α0) } ⊆ On.

Let µ0 := min(A2). Then clearly (ρ0, µ0) = min≺(a). Finally notice that

(̂α, β) must be a set, for (̂α, β) ⊆ γ × γ with γ := max{α, β} + 1. ¤

Corollary 4.15. On × On is isomorphic to On (w.r.t. ≺ and ∈ ¹On).

Proof. By Lemma 4.14 ≺ is a well-ordering on On × On. Hence by
Corollary 3.19 there is an isomorphism onto a transitive and hence also
ordinal class. This class cannot possibly be a set, for then On×On would be
a set as well. But by Lemma 3.23(c) On is the only proper ordinal class. ¤

Theorem 4.16. ℵα × ℵα is isomorphic to ℵα (w.r.t. the relations ≺ on
ℵα × ℵα and ∈ on ℵα).

120 5. SET THEORY

Proof. Assume: ∃α(ℵα × ℵα not isomorphic to ℵα). Let

α0 := min{α | ℵα × ℵα not isomorphic to ℵα }.
Clearly α0 6= 0. Since ℵα0

× ℵα0
and ℵα0

are well-ordered sets, one of them
must be isomorphic to a proper initial segment of the other. Therefore we
distinguish two cases.

Case (a). ℵα0
is isomorphic to (̂β, γ) with β, γ < ℵα0

. Choose δ < ℵα0

with β, γ < δ. Then (̂β, γ) ⊆ δ × δ, and

|ℵα0
| = |(̂β, γ)| ≤ |δ × δ| = |ℵτ × ℵτ | for some τ < α0

= |ℵτ | by choice of α0,

hence a contradiction to Lemma 4.12(b).
Case (b). ℵα0

× ℵα0
is isomorphic to β < ℵα0

. Then

|ℵα0
| ≤ |ℵα0

× ℵα0
| = |β| ≤ |ℵα0

|
|ℵα0

| = |β|,
hence a contradiction to the fact that ℵα0

is a cardinal, β < ℵα0
. ¤

Corollary 4.17. (a) |ℵα × ℵβ| = |max{ℵα,ℵβ}|.
(b) n 6= 0 → |nℵα| = |ℵα|.

Proof. (a). We may assume α ≤ β. Then

|ℵβ| ≤ |ℵα × ℵβ| ≤ |ℵβ × ℵβ| = |ℵβ|.
(b). This follows easily from Theorem 4.16, by induction on n. ¤

5. The Axiom of Choice

5.1. Axiom of Choice, Well Ordering Theorem, Zorn’s Lemma.

A relation R on A is a partial ordering if for all x, y, z ∈ A
¬xRx, irreflexivity

xRy → yRz → xRz, transitivity.

An element x ∈ A is maximal if there is no y ∈ A such that xRy. Let
B ⊆ A. An element x ∈ A is an upper bound of B if

∀y∈B.yRx ∨ y = x.

Theorem 5.1. The following are equivalent.

(a) The axiom of choice (AC)

∀x.∅ /∈ x → ∃f.f : x →
⋃

x ∧ (∀y∈x)(f(y) ∈ y).

(b) The well ordering theorem (WO)

∀a∃r(r is a well ordering on a).

(c) Zorn’s Lemma (ZL): Let (P, <) be a non empty partial ordering, with
the property that every (by <) linearly ordered subset L ⊆ P has an
upper bound in P . Then P has a maximal element.

5. THE AXIOM OF CHOICE 121

Proof. (ZL) → (WO). Let a be given, and define

P := { f | ∃α(f : α → a injective) } ⊆ P(H(a) × a).

P is partially ordered by proper inclusion (. Let L ⊆ P be linearly ordered.
Then

⋃
L ∈ P , hence

⋃
L is an upper bound of L. Zorn’s Lemma then gives

a maximal element f0 ∈ P . Clearly f0 is a bijection of an ordinal α0 onto
a, hence f0 induces a well ordering on a.

(WO) → (AC). Let ∅ /∈ x. By (WO) there is a well ordering < on
⋃

x.
Clearly < induces a well ordering on every y ∈ x. Define

f : x →
⋃

x,

y 7→ min <(y) ∈ y.

(AC) → (ZL). Let < be a partial ordering on P 6= ∅. Assume that every
subset L ⊆ P linearly ordered by < has an upper bound in P . By (AC)
there is a choice function f on P(P) \ {∅}. Let z /∈ P be arbitrary, and
define

F : On → V

F(α) =

{

f({ y | y ∈ P \ F [α] ∧ y upper bound of F [α] }), if {. . . } 6= ∅;
z, otherwise.

Then there is a ρ such that F(ρ) = z, for otherwise F : On → P would be
injective, contradicting our assumption that P is a set. Let ρ0 := min{ ρ |
F(ρ) = z }. F [ρ0] is linearly ordered, and we have F [ρ0] ⊆ P . By assump-
tion there is an upper bound y0 ∈ P of F [ρ0]. We show that y0 is a maximal
element in P . So assume y0 < y for some y ∈ P . Then y is an upper bound
of F [ρ0] and y /∈ F [ρ0]. But this contradicts the definition of ρ0. ¤

From now on we will assume the axiom of choice; however, we will mark
every theorem and every definition depending on it by (AC).

(AC) clearly is equivalent to its special case where every two elements
y1, y2 ∈ x are disjoint. We hence note the following equivalent to the axiom
of choice:

Lemma 5.2. The following are equivalent

(a) The axiom of choice (AC).
(b) For every surjective g : a → b there is an injective f : b → a such that

(∀x∈b)(g(fx) = x).

Proof. (a) ⇒ (b). Let g : b → a surjective. By (AC) there is a well-
ordering < of b. Define f : a → b by f(x) := min<{ y | y ∈ b ∧ g(y) = x }.

(b) ⇒ (a). We may assume x 6= ∅ and (∀y1, y2 ∈ x)(y1 ∩ y2 = ∅). Define
g :

⋃
x → x by g(z) := the unique y ∈ x such that z ∈ y. Then g is

surjective. By (b) there is an injective f : x → ⋃
x such that g(fy) = y for

all y ∈ x, hence f(y) ∈ y. ¤

5.2. Cardinality. α is the cardinality of a if α is a cardinal and there
is a bijection f : a → α.

Theorem 5.3 (AC). Every set has a unique cardinality.

122 5. SET THEORY

Proof. Uniqueness. Clear. Existence. Let < be a well–ordering on a.
Then there is a γ such that a is isomorphic to γ. Hence { τ | |τ | = |a| } 6= ∅
and therefore min{ τ | |τ | = |a| } is a cardinal. ¤

Clearly |a| = |b| iff the cardinality of a equals the cardinality of b, and
|a| ≤ |b| iff the cardinality of a is less than or equal to the cardinality of b.
Therefore we can use |a| as a notation for the cardinality of a.

A set a is defined to be finite if a can be mapped bijectively onto a
natural number, and infinite otherwise. Using (AC) it follows that a is
finite iff |a| < ω.

Lemma 5.4 (AC). If a, b 6= ∅ and a or b is infinite, then

|a × b| = max{|a|, |b|}.
Proof. Let |a| = max{|a|, |b|}. Then

|a| ≤ |a × b| = ||a| × |b|| ≤ ||a| × |a|| = |a|.
¤

Theorem 5.5 (AC). Let I be infinite or supi∈I |Ai| be infinite. Then

(a) |⋃i∈I Ai| ≤ max{|I|, supi∈I |Ai|}.
(b) If in addition (∀i ∈ I)(Ai 6= ∅) and (∀i, j ∈ I)(i 6= j → Ai ∩ Aj = ∅),

then equality holds.

Proof. (a). We may assume κ := supi∈I |Ai| 6= 0. Choose a well-
ordering < of I and define w.r.t. this well-ordering

f :
⋃

i∈I

Ai →
⋃

i∈I

({i} × Ai),

f(x) = (min{ i ∈ I | x ∈ Ai }, x).

Clearly f is injective. Hence

|
⋃

i∈I

Ai| ≤ |
⋃

i∈I

({i} × Ai)|

≤ |
⋃

i∈I

({i} × κ)|

= |I × κ|
= max{|I|, κ}.

(b). Because of (a) it suffices to show that |I|, |Ai| ≤ |⋃i∈I Ai|. The se-
cond estimate is clear. For the first one choose a well-ordering < of

⋃

i∈I Ai

and define f : I → ⋃

i∈I Ai by f(i) := min<{x | x ∈ Ai }. By our assumption
f is injective. ¤

A set a is Dedekind-finite if a cannot be mapped bijectively onto a proper
subset b of a, otherwise Dedekind-infinite.

Theorem 5.6 (AC). A set a is Dedekind-infinite iff a is infinite.

Proof. →. Let b (a and f : a ↔ b. Assume |a| < ω, say |a| = n.
Then there is a c (n and some g : n ↔ c. We show by induction on n that
this is impossible:

∀n¬(∃c (n)∃g(g : n ↔ c).

5. THE AXIOM OF CHOICE 123

0. Clear. n+1. Let g : n+1 ↔ c and c (n+1. We may assume n /∈ rng(g¹n).
It follows that g¹n : n ↔ c \ {n} (n and hence a contradiction to the IH.

←. Let g : ω → a be injective and h : g[ω] ↔ g[ω \ 1] defined by

h = { (g(n), g(n + 1)) | n ∈ ω }.
Define f : a ↔ (a \ {g(0)}) by

f(x) =

{

x, if x ∈ a \ g[ω];

h(x), otherwise.

¤

5.3. Regular and Singular Cardinals. Let κ, λ denote cardinals ≥
ω. In this section we shall always assume the Axiom of Choice (AC).

Definition 5.7 (AC). (a) x ⊆ κ is confinal in κ if sup(x) = κ.
(b) cf(κ) := min{ |x| | x ⊆ κ and x confinal with κ } is the confinality of κ.
(c) κ is regular if cf(κ) = κ.
(d) κ is singular if cf(κ) < κ.

Theorem 5.8 (AC). (a) ω = ℵ0 is regular.
(b) ℵα+1 is regular.
(c) If β is a limit and β < ℵβ, then ℵβ is singular.

Proof. (a). Assume ω is singular, that is cf(ω) < ω. Then there is an
x ⊆ ω such that |x| = n and sup(x) = ω. But this is impossible (proof by
induction on n).

(b). Assume ℵα+1 is singular. Then cf(ℵa+1) ≤ ℵa. Hence there is an
x ⊆ ℵα+1 such that |x| ≤ ℵα and sup(x) = ℵα+1. But then

ℵα+1 = |
⋃

x|
≤ max{|x|, sup{ |y| | y ∈ x }} by Theorem 5.5(a)

≤ ℵα,

a contradiction.
(c). Let β be a limit such that β < ℵβ . Then we have ℵβ = sup{ℵγ |

γ < β } and moreover |{ ℵγ | γ < β }| = |β| < ℵβ . Hence ℵβ is singular. ¤

By definition for every infinite cardinal κ there is a subset x ⊆ κ whose
cardinality equals cf(κ), hence which can be mapped bijectively onto cf(κ).
We now show that one can even assume that this bijection is an isomorphism.

Lemma 5.9 (AC). Let κ be an infinite cardinal. Then there exists a
subset x ⊆ κ confinal in κ that is isomorphic to cf(κ).

Proof. Let y ⊆ κ, sup(y) = κ, |y| = cf(κ) and g : cf(κ) ↔ y. By
transfinite recursion we define

F : On → V,

F(α) := sup(F [α] ∪ g[α]) + 1.

Let f := F¹cf(κ). One can see easily

(a) α < β < cf(κ) → f(α) < f(β) ∧ g(α) < f(β).
(b) rng(f) ⊆ κ
(c) rng(f) is confinal with κ.

124 5. SET THEORY

rng(f) is the x we are looking for. ¤

Corollary 5.10 (AC). If κ is an infinite cardinal, then cf(κ) is a re-
gular cardinal.

Proof. cf(cf(κ)) ≤ cf(κ) is clear. We must show cf(κ) ≤ cf(cf(κ)). By
the lemma above there are x, f such that x ⊆ κ, sup(x) = κ and f : cf(κ) ↔
x isomorphism. Moreover there is y ⊆ cf(κ) such that sup(y) = cf(κ) and
|y| = cf(cf(κ)). One can see easily that { f(α) | α ∈ y } is confinal with κ.
Hence

cf(κ) ≤ |{ f(α) | α ∈ y }|
= |y|
= cf(cf(κ))

This concludes the proof. ¤

Theorem 5.11 (König). Let κ be an infinite cardinal. Then κ < |cf(κ)κ|.
Proof. κ = |1κ| ≤ |cf(κ)κ| is clear. Hence it suffices to derive a contra-

diction from the assumption that there is a bijection f : κ ↔ cf(κ)κ. Accord-
ing to Lemma 5.9 there exists x ⊆ κ such that sup(x) = κ and moreover an
isomorphism g : cf(κ) ↔ x. For every α < cf(κ) we therefore have g(α) < κ
and hence

|{ f(γ)(α) | γ < g(α) }| ≤ |g(α)| < κ,

hence { f(γ)(α) | γ < g(α) } (κ. Let

h : cf(κ) → κ,

h(α) := min(κ \ { f(γ)(α) | γ < g(α) }).
We obtain the desired contradiction by showing that f(γ) 6= h for all γ < κ.
So let γ < κ. Choose α < cf(κ) such that γ < g(α). Then h(α) 6= f(γ)(α)
by construction of h. ¤

5.4. Cardinal Powers, Continuum Hypothesis. In this section we
again assume (AC). We define

ℵℵβ
α := |ℵβℵα|.

Later we will introduce powers of ordinals as well. It should always be clear
from the context whether we mean ordinal or cardinal power.

Theorem 5.12 (AC). (a) ℵβ < cf(ℵα) → ℵα ≤ ℵℵβ
α ≤ |P(ℵα)|

(b) cf(ℵα) ≤ ℵβ ≤ ℵα → ℵα < ℵℵβ
α ≤ |P(ℵα)|

(c) ℵα ≤ ℵβ → ℵℵβ
α = |P(ℵβ)|.

Proof. (a).

ℵα ≤ |ℵβℵα|
≤ |ℵβ (ℵα{0, 1})|
= |ℵβ×ℵα{0, 1}|
= |ℵα{0, 1}| because ℵβ ≤ ℵα

= |P(ℵα)|.

5. THE AXIOM OF CHOICE 125

(b).

ℵα < |cf(ℵα)ℵα| König’s Theorem

≤ |ℵβℵα|
≤ |P(ℵα)| as in (a).

(c).

|P(ℵβ)| = |ℵβ{0, 1}|
≤ |ℵβℵα|
≤ |ℵβ×ℵα{0, 1}|
= |ℵβ{0, 1}|
= |P(ℵβ)|.

This concludes the proof. ¤

One can say much more about cardinal powers if one assumes the so-
called continuum hypothesis:

|P(ℵ0)| = ℵ1. (CH)

An obvious generalization to all cardinals is the generalized continuum hy-
pothesis:

|P(ℵα)| = ℵα+1. (GCH)

It is an open problem whether the continuum hypothesis holds in the cu-
mulative type structure (No. 1 in Hilbert’s list of mathematical problems,
posed in a lecture at the international congress of mathematicians in Paris
1900). However, it is known that continuum hypothesis is independent from
the other axioms of set theory. We shall always indicate use of (CH) or
(GCH).

Theorem 5.13 (GCH). (a) ℵβ < cf(ℵα) → ℵα = ℵℵβ
α .

(b) cf(ℵα) ≤ ℵβ ≤ ℵα → ℵℵβ
α = ℵα+1.

(c) ℵα ≤ ℵβ → ℵℵβ
α = ℵβ+1.

Proof. (b) and (c) follow with (GCH) from the previous theorem.
(a). Let ℵβ < cf(ℵα). First note that

ℵβℵα =
⋃

{ ℵβγ | γ < ℵα }
This can be seen as follows. ⊇ is clear. ⊆. Let f : ℵβ → ℵα. Because
of |f [ℵβ]| ≤ ℵβ < cf(ℵα) we have sup(f [ℵβ]) < γ < ℵα for some γ, hence
f : ℵβ → γ.

This gives

ℵα ≤ |ℵβℵα| previous theorem

= |
⋃

{ ℵβγ | γ < ℵα }| by the note above

≤ max{|ℵα|, sup
γ<ℵα

|ℵβγ| } by Theorem 5.5(a)

Hence it suffices to show that |ℵβγ| ≤ ℵα for γ < ℵα. So let γ < ℵα.

|ℵβγ| ≤ |ℵβ×γ{0, 1}|

126 5. SET THEORY

≤ |ℵβ×ℵδ{0, 1}| for some δ with |γ| ≤ ℵδ < ℵα

≤
{

|P(ℵδ)| if β < δ

|P(ℵβ)| if δ ≤ β

=

{

ℵδ+1 if β < δ

ℵβ+1 if δ ≤ β

≤ ℵα.

This concludes the proof. ¤

6. Ordinal Arithmetic

We define addition, multiplication and exponentiation for ordinals and
prove their basic properties. We also treat Cantor’s normal form.

6.1. Ordinal Addition. Let

α + 0 := α,

α + (β + 1) := (α + β) + 1,

α + β := sup{α + γ | γ < β } if β limit.

More precisely, define sα : On → V by

sα(0) := α,

sα(β + 1) := sα(β) + 1,

sα(β) :=
⋃

rng(sα¹β) if β limit

and then let α + β := sα(β).

Lemma 6.1 (Properties of Ordinal Addition). (a) α + β ∈ On.
(b) 0 + β = β.
(c) ∃α, β(α + β 6= β + α).
(d) β < γ → α + β < α + γ.
(e) There are α, β, γ such that α < β, but α + γ 6< β + γ.
(f) α ≤ β → α + γ ≤ β + γ.
(g) For α ≤ β there is a unique γ such that α + γ = β.
(h) If β is a limit, then so is α + β.
(i) (α + β) + γ = α + (β + γ).

Proof. (a). Induction on β. Case 0. Clear. Case β + 1. Then
α + (β + 1) = (α + β) + 1 ∈ On, for by IH α + β ∈ On. Case β limit. Then
α + β = sup{α + γ | γ < β } ∈ On, for by IH α + γ ∈ On for all γ < β.

(b). Induction on β. Case 0. Clear. Case β + 1. Then 0 + (β + 1) =
(0 + β) + 1 = β + 1, for by IH 0 + β = β. Case β limit. Then

0 + β = sup{ 0 + γ | γ < β }
= sup{ γ | γ < β } by IH

=
⋃

β

= β, because β is a limit.

(c). 1 + ω = sup{ 1 + n | n ∈ ω } = ω 6= ω + 1.

6. ORDINAL ARITHMETIC 127

(d). Induction on γ. Case 0. Clear. Case γ + 1. Then

β < γ + 1,

β < γ ∨ β = γ,

α + β < α + γ ∨ α + β = α + γ by IH,

α + β ≤ α + γ < (α + γ) + 1 = α + (γ + 1).

Case γ limit. Let β < γ, hence β < δ for some δ < γ. Then α + β < α + δ
by IH, hence α + β < sup{α + δ | δ < γ } = α + γ.

(e). 0 < 1, but 0 + ω = ω = 1 + ω
(f). We first remark that there can be no β such that α < β < α + 1,

for otherwise we would have in case β ∈ α the contradiction β ∈ α ∈ β and
in case β = α the contradiction α ∈ α. As a second preliminary remark we
note that

α ≤ β → α + 1 ≤ β + 1,

for in case β+1 < α+1 we would have α < β+1 < α+1, which cannot be the
case (as we have just seen). – We now show the claim α ≤ β → α+γ ≤ β+γ
by induction on γ. Case 0. Clear. Case γ + 1. Then

α + γ ≤ β + γ by IH,

(α + γ) + 1 ≤ (β + γ) + 1 by the second preliminary remark,

α + (γ + 1) ≤ β + (γ + 1) by definition.

Case γ limit. Then

α + δ ≤ β + δ for all δ < γ, by IH,

α + δ ≤ sup{β + δ | δ < γ }
sup{α + δ | δ < γ } ≤ sup{β + δ | δ < γ }
α + γ ≤ β + γ by definition.

(g). Uniqueness of γ follows from (d). Existence: Let α ≤ β. By (b)
and (f) β = 0 + β ≤ α + β. Let γ be the least ordinal such that β ≤ α + γ.
We show that β = α + γ. Case γ = 0. Then β ≤ α + γ = α + 0 = α ≤ β,
hence β = α + γ. Case γ = γ′ + 1. Then α + γ′ < β, hence (α + γ′) + 1 ≤ β
by the first preliminary remark for (f) and hence α + γ = β. Case γ limit.
Then α + δ < β for all δ < γ, hence α + γ = sup{α + δ | δ < γ } ≤ β and
hence α + γ = β.

(h). Let β limit. We use the characterization of limits in Lemma 3.27(a).
α + β 6= 0: Because of 0 ≤ α we have 0 < β = 0 + β ≤ α + β by (f).
γ < α + β → γ + 1 < α + β: Let γ < α + β = sup{α + δ | δ < β }, hence
γ < α + δ for some δ < β, hence γ + 1 < α + (δ + 1) with δ + 1 < β, hence
γ + 1 < sup{α + δ | δ < β }.

(i). Induction on γ. Case 0. Clear. Case γ + 1. Then

(α + β) + (γ + 1) = [(α + β) + γ] + 1

= [α + (β + γ)] + 1 by IH

= α + [(β + γ) + 1]

= α + [β + (γ + 1)]

128 5. SET THEORY

Case γ limit. By (h) also β + γ is a limit. Hence

(α + β) + γ = sup{ (α + β) + δ | δ < γ }
= sup{α + (β + δ) | δ < γ } by IH

= sup{α + ε | ε < β + γ } see below

= α + (β + γ).

The equality of both suprema can be seen as follows. If ε < β + γ, then
ε < β+δ for some δ < γ (by definition of β+γ) and hence α+ε < α+(β+δ).
If conversely δ < γ, then β + δ < β + γ, hence α + (β + δ) = α + ε for some
ε < β + γ (take ε := β + δ). ¤

6.2. Ordinal Multiplication. Ordinal multiplication is defined by

α · 0 := 0,

α · (β + 1) := (α · β) + α,

α · β := sup{α · γ | γ < β } if β limit.

We write αβ for α · β.

Lemma 6.2 (Properties of Ordinal Multiplication). (a) αβ ∈ On.
(b) 0β = 0, 1β = β.
(c) ∃α, β(αβ 6= βα).
(d) 0 < α → β < γ → αβ < αγ.
(e) There are α, β, γ such that 0 < γ and α < β, but αγ 6< βγ.
(f) α ≤ β → αγ ≤ βγ.
(g) If 0 < α and β is a limit, then so is αβ.
(h) α(β + γ) = αβ + αγ.
(i) There are α, β, γ such that (α + β)γ 6= αγ + βγ.
(j) αβ = 0 → α = 0 ∨ β = 0.
(k) (αβ)γ = α(βγ).
(l) If 0 < β, then there are unique γ, ρ such that α = βγ + ρ and ρ < β.

Proof. (a). Induction on β. Case 0. Clear. Case β + 1. Then
α(β + 1) = (αβ) + α ∈ On, for by IH αβ ∈ On. Case β limit. Then
αβ = sup{αγ | γ < β } ∈ On, for by IH αγ ∈ On for all γ < β.

(b). 0β = 0: Induction on β. Case 0. Clear. Case β + 1. Then
0(β + 1) = (0β) + 0 = 0 by IH. Case β limit. 0β = sup{ 0γ | γ < β } = 0
by IH. – 1β = β: Induction on β. Case 0. Clear. Case β + 1. Then
1(β + 1) = (1β) + 1 = β + 1 by IH. Case β limit. 1β = sup{ 1γ | γ < β } =
sup{ γ | γ < β } = β by IH.

(c). Fist note that for all n ∈ ω we have nω = sup{nm | m < ω } = ω.
This implies 2ω = ω, but ω2 = ω(1 + 1) = ω1 + ω = ω + ω > ω.

(d). Let 0 < α. We show β < γ → αβ < αγ by induction on γ. Case 0.
Clear. Case γ + 1. Then

β < γ + 1,

β < γ ∨ β = γ,

αβ < αγ ∨ αβ = αγ by IH,

αβ ≤ αγ < (αγ) + α = α(γ + 1).

6. ORDINAL ARITHMETIC 129

Case γ limit. Let β < γ, hence β < δ for some δ < γ. Then αβ < αδ by
IH, hence αβ < sup{αδ | δ < γ } = αγ.

(e). We have 0 < ω and 1 < 2, but 1ω = ω = 2ω.
(f). We show the claim α ≤ β → αγ ≤ βγ by induction on γ. Case 0.

Clear. Case γ + 1. Then

αγ ≤ βγ by IH,

(αγ) + α ≤ (βγ) + α ≤ (βγ) + β by Lemma 6.1(f) and (d)

α(γ + 1) ≤ β(γ + 1) by definition.

Case γ limit. Then

αδ ≤ βδ for all δ < γ, by IH,

αδ ≤ sup{βδ | δ < γ },
sup{αδ | δ < γ } ≤ sup{βδ | δ < γ },
αγ ≤ βγ by definition.

(g). Let 0 < α and β limit. For the proof of αβ limit we again use the
characterization of limits in Lemma 3.27(a). αβ 6= 0: Because of 1 ≤ α and
ω ≤ β we have 0 < ω = 1ω ≤ αβ by (f). γ < αβ → γ + 1 < αβ: Let
γ < αβ = sup{αδ | δ < β }, hence γ < αδ for some δ < β, hence γ + 1 <
αδ + 1 ≤ αδ + α = α(δ + 1) with δ + 1 < β, hence γ + 1 < sup{αδ | δ < β }.

(h). We must show α(β + γ) = αβ +αγ. We may assume let 0 < α. We
emply induction on γ. Case 0. Clear. Case γ + 1. Then

α[β + (γ + 1)] = α[(β + γ) + 1]

= α(β + γ) + α

= (αβ + αγ) + α by IH

= αβ + (αγ + α)

= αβ + α(γ + 1).

Case γ limit. By (g) αγ is a limit as well. We obtain

α(β + γ) = sup{αδ | δ < β + γ }
= sup{α(β + ε) | ε < γ }
= sup{αβ + αε | ε < γ } by IH

= sup{αβ + δ | δ < αγ }
= αβ + αγ.

(i). (1 + 1)ω = 2ω = ω, but 1ω + 1ω = ω + ω.
(j). If 0 < α, β, hence 1 ≤ α, β, then 0 < 1 · 1 ≤ αβ.
(k). Induction on γ. We may assume β 6= 0. Case 0. Clear. Case

γ + 1. Then

(αβ)(γ + 1) = (αβ)γ + αβ

= α(βγ) + αβ by IH

= α(βγ + β) by (h)

= α[β(γ + 1)]

130 5. SET THEORY

Case γ limit. By (g) βγ is a limit as well. We obtain

(αβ)γ = sup{ (αβ)δ | δ < γ }
= sup{α(βδ) | δ < γ } by IH

= sup{αε | ε < βγ }
= α(βγ).

(l). Existence: Let 0 < β, hence 1 ≤ β and hence α = 1α ≤ βα.
Let γ be the least ordinal such that α ≤ βγ. Case α = βγ. Let ρ = 0.
Case α < βγ. If γ = γ′ + 1, then βγ′ < α. Hence there is a ρ such
that βγ′ + ρ = α. Moreover, ρ < β, because from ρ ≥ β is follows that
α = βγ′ + ρ ≥ βγ′ + β = β(γ′ + 1) = βγ, contradicting our assumption. If
γ is a limit, then α < βγ = sup{βδ | δ < γ }, hence α < βδ for some δ < γ,
a contradiction.

Uniqueness: Assume βγ1 +ρ1 = βγ2 +ρ2 with ρ1, ρ2 < β. If say γ1 < γ2,
then

βγ1 + ρ1 < βγ1 + β

= β(γ1 + 1)

≤ βγ2

≤ βγ2 + ρ2

hence we have a contradiction. Therefore γ1 = γ2, and hence ρ1 = ρ2. ¤

Corollary 6.3. Every ordinal α can be written uniquely in the form
α = ωγ + n. Here n = 0 iff α = 0 or α is a limit.

Proof. It remains to be shown that for every γ either ωγ = 0 or ωγ is a
limit. In case γ = 0 this is clear. In case γ+1, the ordinal ω(γ+1) = ωγ+ω is
a limit by Lemma 6.1(h). If γ is a limit, then so is ωγ (by Lemma 6.2(g)). ¤

6.3. Ordinal Exponentiation. Ordinal exponentiation is defined by

α0 :=

{

0, if α = 0;

1, otherwise,

αβ+1 := αβα,

αβ := sup{αγ | γ < β } if β limit.

Lemma 6.4 (Properties of Ordinal Exponentiation). (a) αβ ∈ On.
(b) 0β = 0, 1β = β.
(c) 1 < α → β < γ → αβ < αγ.
(d) There are α, β, γ such that 1 < γ and 1 < α < β, but αγ 6< βγ.
(e) α ≤ β → αγ ≤ βγ.
(f) If 1 < α and β is a limit, then so is αβ.
(g) αβ+γ = αβαγ.
(h) αβγ = (αβ)γ.
(i) 1 < α → β ≤ αβ.

Proof. (a). Induction on β. Case 0. Clear. Case β + 1. Then
αβ+1 = (αβ)α ∈ On, for by IH αβ ∈ On. Case β limit. Then αβ = sup{αγ |
γ < β } ∈ On, for by IH αγ ∈ On for all γ < β.

6. ORDINAL ARITHMETIC 131

(b). 0β = 0: Induction on β. Case 0. 00 = 0 holds by definition. Case

β + 1. Then 0β+1 = (0β)0 = 0. Case β limit. 0β = sup{ 0γ | γ < β } = 0
by IH. – 1β = 1: Induction on β. Case 0. Clear. Case β + 1. Then
1β+1 = (1β)1 = 1 by IH. Case β limit. 1β = sup{ 1γ | γ < β } = sup{ 1 |
γ < β } = 1 by IH.

(c). Let 1 < α. We show β < γ → αβ < αγ by induction on γ. Case 0.
Clear. Case γ + 1. Then

β < γ + 1,

β < γ ∨ β = γ,

αβ < αγ ∨ αβ = αγ by IH,

αβ ≤ αγ < αγ + αγ ≤ αγ+1.

Case γ limit. Let β < γ, hence β < δ for some δ < γ. Then αβ < αδ by
IH, hence αβ < sup{αδ | δ < γ } = αγ .

(d). For 1 < n we have nω = sup{nm | m < ω } = ω and hence
2ω = ω = 3ω.

(e). We show the claim α ≤ β → αγ ≤ βγ by induction on γ. Case 0.
Clear. Case γ + 1. Let α ≤ β. Then

αγ ≤ βγ by IH,

αγ+1 = αγα

≤ βγα

≤ βγβ

= βγ+1.

Case γ limit. Let again α ≤ β. Then

αδ ≤ βδ for all δ < γ, by IH,

αδ ≤ sup{βδ | δ < γ }
sup{αδ | δ < γ } ≤ sup{βδ | δ < γ }
αγ ≤ βγ by definition.

(f). Let 1 < α and β limit. For the proof of αβ limit we again use the
characterization of limits in Lemma 3.27(a). αβ 6= 0: Because of 1 ≤ α we
have 1 = 1β ≤ αβ . γ < αβ → γ + 1 < αβ : Let γ < αβ = sup{αδ | δ < β },
hence γ < αδ for some δ < β, hence γ + 1 < αδ + 1 ≤ αδ2 ≤ αδ+1 with
δ + 1 < β, hence γ + 1 < sup{αδ | δ < β }.

(g). We must show αβ+γ = αβαγ . We may assume α 6= 0, 1. The proof
is by induction on γ. Case 0. Clear. Case γ + 1. Then

αβ+γ+1 = αβαγα by IH

= αβαγ+1.

Case γ limit.

αβ+γ = sup{αδ | δ < β + γ }
= sup{αβ+ε | ε < γ }
= sup{αβαε | ε < γ } by IH

132 5. SET THEORY

= sup{αβδ | δ < αγ }
= αβαγ .

(h). We must show αβγ = (αβ)γ . We may assume α 6= 0, 1 and β 6= 0.
The proof is by induction on γ. Case 0. Clear. Case γ + 1. Then

αβ(γ+1) = αβγαβ

= (αβ)γαβ by IH

= (αβ)γ+1.

Case γ limit. Because of α 6= 0, 1 and β 6= 0 we know that αβγ and (αβ)γ

are limits. Hence

αβγ = sup{αδ | δ < βγ }
= sup{αβε | ε < γ }
= sup{ (αβ)ε | ε < γ } by IH

= (αβ)γ .

(i). Let 1 < α. We show β ≤ αβ by induction on β. Case 0. Clear.
Case β + 1. Then β ≤ αβ by IH, hence

β + 1 ≤ αβ + 1

≤ αβ + αβ

≤ αβ+1.

Case β limit.

β = sup{ γ | γ < β }
≤ sup{αγ | γ < β } by IH

= αβ .

This concludes the proof. ¤

6.4. Cantor Normal Form.

Theorem 6.5 (Cantor Normal Form). Let γ ≥ 2. Every α can be written
uniquely in the form

α = γα1β1 + · · · + γαnβn where α ≥ α1 > · · · > αn and 0 < βi < γ.

Proof. Existence. Induction on α. Let δ be minimal such that α < γδ;
such a δ exists since α ≤ γα. But δ cannot be a limit, for otherwise α < γε

for some ε < δ. If δ = 0, then α = 0 and the claim is trivial. So let
δ = α1 + 1, hence

γα1 ≤ α < γα1+1.

Division with remainder gives

α = γα1β1 + ρ with ρ < γα1 .

Clearly 0 < β1 < γ. Now if ρ = 0 we are done. Otherwise we have

ρ = γα2β2 + · · · + γαnβn by IH.

7. NORMAL FUNCTIONS 133

We still must show α1 > α2. But this holds, because α2 ≥ α1 entails
ρ ≥ γα2 ≥ γα1 , a contradiction.

Uniqueness. Let

γα1β1 + · · · + γαnβn = γα′

1β′
1 + · · · + γα′

mβ′
m.

and assume that both representations are different. Since no such sum can
extend the other, we must have i ≤ n, m such that (αi, βi) 6= (α′

i, β
′
i). By

Lemma 6.1(d) we can assume i = 1. First we have

γα1β1 + · · · + γαn−1βn−1 + γαnβn

< γα1β1 + · · · + γαn−1βn−1 + γαn+1 since βn < γ

≤ γα1β1 + · · · + γαn−1(βn−1 + 1) for αn < αn−1

≤ γα1β1 + · · · + γαn−1+1

. . .

≤ γα1(β1 + 1).

Now if e.g. α1 < α′
1, then we would have γα1β1+· · ·+γαnβn < γα1(β1+1) ≤

γα1+1 ≤ γα′

1 , which cannot be. Hence α1 = α′
1. If e.g. β1 < β′

1, then we
would have γα1β1 + · · ·+ γαnβn < γα1(β1 + 1) ≤ γα1β′

1, which again cannot
be the case. Hence β1 = β′

1. ¤

Corollary 6.6 (Cantor Normal Form With Base ω). Every α can be
written uniquely in the form

α = ωα1 + · · · + ωαn with α ≥ α1 ≥ · · · ≥ αn.

An ordinal α is an additive principal number when α 6= 0 and β + γ < α
for β, γ < α.

Corollary 6.7. Additive principal numbers are exactly the ordinals of
the form ωξ.

Proof. This follows from Cantor’s normal form with base ω. ¤

Corollary 6.8 (Cantor Normal Form With Base 2). Every α can be
written uniquely in the form

α = 2α1 + · · · + 2αn with α ≥ α1 > · · · > αn.

Let ω0 := 1, ωk+1 := ωωk and ε0 := supk<ω ωk. Notice that ε0 is the
least ordinal α such that ωα = α.

7. Normal Functions

In [29] Veblen investigated the notion of a continuous monotonic func-
tion on a segment of the ordinals, and introduced a certain hierarchy of
normal functions. His goal was to generalize Cantor’s theory of ε-numbers
(from [5]).

134 5. SET THEORY

7.1. Closed Unbounded Classes. Let Ω be a regular cardinal > ω
or Ω = On. An important example is Ω = ℵ1, that is the case where Ω is the
set of all countable ordinals. Let α, β, γ, δ, ε, ξ, η, ζ denote elements of Ω. A
function ϕ : Ω → Ω is monotone if α < β implies ϕα < ϕβ. ϕ is continuous
if ϕα = supξ<α ϕξ for every limit α. ϕ is normal if ϕ is monotone and
continuous.

Lemma 7.1. For every monotone function ϕ we have α ≤ ϕα.

Proof. Induction on α. Case 0. 0 ≤ ϕ0. Case α + 1. α ≤ ϕα <
ϕ(α + 1). Case α limit. α = supξ<α ξ ≤ supξ<α ϕξ ≤ ϕα. ¤

A class B ⊆ Ω is bounded if sup(B) ∈ Ω. A class A ⊆ Ω is closed if
for every bounded subclass B ⊆ A we have sup(B) ∈ A. Closed unbounded
classes A ⊆ Ω are called normal or closed unbounded in Ω (club for short).

If for instance Ω = Ω1, then every B ⊆ Ω is a set, and B is bounded iff
B is countable. If Ω = On, then B is bounded iff B is a set.

By Corollary 3.19 (to the Isomorphy Theorem of Mostowski) for every
A ⊆ On we have a uniquely determined isomorphism of an ordinal class onto
A, that is an f : On → A (or f : α → A). This isomorphism is called the
ordering function of A. Notice that f is the monotone enumeration of A.

Lemma 7.2. The range of a normal function is a normal class. Con-
versely, the ordering function of a normal class is a normal function.

Proof. Let ϕ be a normal function. ϕ[Ω] is unbounded, since for every
α we have α ≤ ϕα. We now show that ϕ[Ω] is closed. So let B = {ϕξ | ξ ∈
A} be bounded, i.e., sup(B) ∈ Ω. Because of ξ ≤ ϕξ then also A is bounded.
We must show sup(B) = ϕα for some α. If A has a maximal element we
are done. Otherwise α := sup(A) is a limit. Then ϕα = supξ<α ϕξ =
supξ∈A ϕξ = sup(B). Conversely, let A be closed and unbounded. We
define a function ϕ : Ω → A by transfinite recursion, as follows.

ϕα := min{ γ ∈ A | ∀ξ.ξ < α → ϕξ < γ }.

ϕ is well defined, since A is unbounded. Clearly ϕ is the ordering function
of A and hence monotone. It remains to be shown that ϕ is continuous.
So let α be a limit. Since ϕ[α] is bounded (this follows from ϕξ < ϕα
for ξ < α) and A is closed, we have supξ∈α ϕξ ∈ A, hence by definition
ϕα = supξ∈α ϕξ. ¤

Lemma 7.3. The fixed points of a normal function form a normal class.

Proof. (Cf. Cantor [5, p. 242]). Let ϕ be a normal function. For every
ordinal α we can construct a fixed point β ≥ α of ϕ by

β := sup{ϕnα | n ∈ N }.

Hence the class of fixed points of ϕ is unbounded. It is closed as well, since
for every class B of fixed points of ϕ we have ϕ(sup(B)) = sup{ϕα | α ∈
B } = sup{α | α ∈ B } = sup(B), i.e., sup(B) is a fixed point of ϕ. ¤

7. NORMAL FUNCTIONS 135

7.2. The Veblen Hierarchy of Normal Functions. The ordering
function of the class of fixed points of a normal function ϕ has been called
by Veblen the first derivative ϕ′ of ϕ. For example, the first derivative of
the function ωξ is the function εξ.

Lemma 7.4 (Veblen). Let (Aγ)γ<β with β limit be a decreasing sequence
of normal classes. Then the intersection

⋂

γ<β Aγ is normal as well.

Proof. Unboundedness. Let α be given and δγ := min{ ξ ∈ Aγ | ξ >
α }. Then (δγ)γ<β is weakly monotonic. Let δ := supγ<β δγ . Then δ ∈ Aγ

for every γ < β, since the Aγ decrease. Hence α < δ ∈ ⋂

γ<β Aγ .

Closedness. Let B ⊆ ⋂

γ<β Aγ , B bounded. Then B ⊆ Aγ for every

γ < β and therefore sup(B) ∈ Aγ . Hence sup(B) ∈ ⋂

γ<β Aγ . ¤

We now define the Veblen hierarchy of normal functions. It is based on
an arbitrary given normal function ϕ : Ω → Ω. We use transfinite recursion
to define for every β ∈ Ω a normal function ϕβ : Ω → Ω:

ϕ0 := ϕ,

ϕβ+1 := (ϕβ)′ ,

for limits β let ϕβ be the ordering function of
⋂

γ<β ϕγ [Ω].

For example, for ϕα := 1 + α we obtain ϕβα = ωβ + α. If we start with
ϕα := ωα, then ϕ1α = εα and ϕ2 enumerates the critical ε-numbers, i.e.,
the ordinals α such that εα = α.

Lemma 7.5. Let β > 0. Then ϕβ is the ordering function of the class of
all common fixed points of all ϕγ for γ < β.

Proof. We must show ϕβ [Ω] = { ξ | ∀γ.γ < β → ϕγξ = ξ }.
⊆. This is proved by transfinite induction on β. In case β + 1 every

ϕβ+1α is a fixed point of ϕβ and hence by IH also a fixed point of all ϕγ for
γ < β. If β is a limit, then the claim follows from ϕβ[Ω] =

⋂

γ<β ϕγ [Ω].
⊇. Let ξ such that ∀γ.γ < β → ϕγξ = ξ be given. If β is a successor,

then ξ ∈ ϕβ[Ω] by definition of ϕβ. If β is a limit, then ξ ∈ ⋂

γ<β ϕγ [Ω] =

ϕβ[Ω]. ¤

It follows that ϕγ(ϕβξ) = ϕβξ for every γ < β.
A further normal function can be obtained as follows. From each of the

normal classes ϕβ[Ω] pick the least fixed point. The class formed in this
way again is normal, hence can be enumerated by a normal function. This
normal function assigns to every β the ordinal ϕβ0.

Lemma 7.6. If ϕ is a normal function with 0 < ϕ0, then λβ ϕβ0 is a
normal function as well.

Proof. We first show

β < γ → ϕβ0 < ϕγ0,

by induction on γ. So let β < γ. Observe that 0 < ϕβ0 by IH or in case
β = 0 by assumption. Hence 0 is not a fixed point of ϕβ and therefore
0 < ϕγ0. But this implies ϕβ0 < ϕβ(ϕγ0) = ϕγ0.

We now show that λβϕβ0 is continuous. Let δ := supβ<γ ϕβ0 with γ
limit. We must show δ = ϕγ0. Because of ϕβ0 ∈ ϕα[Ω] for all α ≤ β < γ

136 5. SET THEORY

and since ϕα[Ω] is closed we have δ ∈ ϕα[Ω], hence δ ∈ ⋂

α<γ ϕα[Ω] = ϕγ [Ω]

and therefore δ ≥ ϕγ0. On the other hand ϕβ0 < ϕβ(ϕγ0) = ϕγ0, hence
δ ≤ ϕγ0. ¤

The fixed points of this function, i.e., the ordinals α such that ϕα0 = α,
are called strongly critical ordinals. Observe that they depend on the given
normal function ϕ = ϕ0. Their ordering function is usually denoted by Γ.
Hence by definition Γ0 := Γ0 is the least ordinal β such that ϕβ0 = β.

7.3. ϕ Normal Form. We now generalize Cantor’s normal form, using
the Veblen hierarchy instead of ωξ.

Lemma 7.7.

ϕβ0
α0 < ϕβ1

α1 ⇐⇒

α0 < ϕβ1
α1, if β0 < β1;

α0 < α1, if β0 = β1;

ϕβ0
α0 < α1, if β0 > β1,

(41)

ϕβ0
α0 = ϕβ1

α1 ⇐⇒

α0 = ϕβ1
α1, if β0 < β1;

α0 = α1, if β0 = β1;

ϕβ0
α0 = α1, if β0 > β1.

(42)

Proof. ⇐. (41). If β0 < β1 and α0 < ϕβ1
α1, then ϕβ0

α0 < ϕβ0
ϕβ1

α1 =
ϕβ1

α1. If β0 = β1 and α0 < α1, then ϕβ0
α0 < ϕβ1

α1. If β0 > β1 and
ϕβ0

α0 < α1, then ϕβ0
α0 = ϕβ1

ϕβ0
α0 < ϕβ1

α1. For (42) one argues similarly.
⇒. If the right hand side of (41) is false, we have

α1 ≤ ϕβ0
α0, if β1 < β0;

α1 ≤ α0, if β1 = β0;

ϕβ1
α1 ≤ α0, if β1 > β0,

hence by ⇐ (with 0 and 1 exchanged) ϕβ1
α1 < ϕβ0

α0 or ϕβ1
α1 = ϕβ0

α0,
hence ¬(ϕβ0

α0 < ϕβ1
α1). If the right hand side of (42) is false, we have

α0 6= ϕβ1
α1, if β0 < β1;

α0 6= α1, if β0 = β1;

ϕβ0
α0 6= α1, if β0 > β1,

and hence by ⇐ in (41) either ϕβ0
α0 < ϕβ1

α1 or ϕβ1
α1 < ϕβ0

α0, hence
ϕβ0

α0 6= ϕβ1
α1. ¤

Corollary 7.8. If β0 ≤ β1, then ϕβ0
α ≤ ϕβ1

α.

Proof. Assume β0 < β1. By Lemma 7.7 (for ≤) it suffices to show
α ≤ ϕβ1

α. But this follows from Lemma 7.1. ¤

Corollary 7.9. If ϕβ0
α0 = ϕβ1

α1, then α0 = α1 and β0 = β1, provided
α0 < ϕβ0

α0 and α1 < ϕβ1
α1.

Proof. Case β0 = β1. Then α0 = α1 follows from Lemma 7.7. Case

β0 < β1. By Lemma 7.7 we have α0 = ϕβ1
α1 = ϕβ0

α0, contradicting our
assumption. Case β1 < β0. Similar. ¤

7. NORMAL FUNCTIONS 137

Corollary 7.10. If ϕ is a normal function with 0 < ϕ0, then every
fixed point α of ϕ = ϕ0 can be written uniquely in the form α = ϕβα′ with
α′ < α.

Proof. We have α + 1 ≤ ϕα+10 by Lemma 7.6 and hence α < ϕα+1α.
Now let β be minimal such that α < ϕβα. By assumption 0 < β. Since α
is a fixed point of all ϕγ with γ < β, we have α = ϕβα′ for some α′. Using
α < ϕβα it follows that α′ < α.

Uniqueness. Let in addition α = ϕβ1
α1 with α1 < α. Then α1 < ϕβ1

α1,
hence β ≤ β1 by the choice of β. Now if β < β1, then we would obtain
ϕβα = ϕβϕβ1

α1 = ϕβ1
α1 = α, contradicting our choice of β. Hence β = β1

and therefore α1 = α. ¤

We now show that every ordinal can be written uniquely in a certain ϕ
normal form. Here we assume that our initial normal function ϕ0 = ϕ is the
exponential function with base ω.

Theorem 7.11 (ϕ Normal Form). Let ϕ0ξ := ωξ. Then every ordinal α
can be written uniquely in the form

α = ϕβ1
α1 + · · · + ϕβn

αn

with ϕβ1
α1 ≥ · · · ≥ ϕβn

αn and αi < ϕβi
αi for i = 1, . . . , k. If α < Γ0, then

in addition we have βi < ϕβi
αi for i = 1, . . . , n.

Proof. Existence. First write α in Cantor normal form α = ϕ0δ1+· · ·+
ϕ0δn with δ1 ≥ · · · ≥ δn. Every summand with δi < ϕ0δi is left unchanged.
Every other summand satisfies δi = ϕ0δi and hence by Corollary 7.10 can
be replaced by ϕβα′ where α′ < ϕβα′.

Uniqueness. Let

α = ϕβ1
α1 + · · · + ϕβn

αn = ϕβ′

1
α′

1 + · · · + ϕβ′

m
α′

m

and assume that both representations are different. Since no such sum can
extend the other, we must have i ≤ n, m such that (βi, αi) 6= (β′

i, α
′
i). By

Lemma 6.1(d) we can assume i = 1. Now if say ϕβ1
α1 < ϕβ′

1
α′

1, then we

would have (since ϕβ′

1
α′

1 is an additive principal number and ϕβ1
α1 ≥ · · · ≥

ϕβn
αn)

ϕβ1
α1 + · · · + ϕβn

αn < ϕβ′

1
α′

1 ≤ ϕβ′

1
α′

1 + · · · + ϕβ′

m
α′

m,

a contradiction.
We must show that in case α < Γ0 we have βi < ϕβi

αi for i = 1, . . . , n.
So assume ϕβi

αi ≤ βi for some i. Then

ϕβi
0 ≤ ϕβi

αi ≤ βi ≤ ϕβi
0,

hence ϕβi
0 = βi and hence

Γ0 ≤ βi = ϕβi
0 ≤ ϕβi

αi ≤ α.

¤

From the ϕβ(α) one obtains a unique notation system for ordinals below
Γ0 := Γ0. Observe however that Γ0 = ϕΓ0

0. by definition of Γ0.

138 5. SET THEORY

8. Notes

Set theory as presented in these notes is commonly called ZFC (Zermelo-
Fraenkel set theory with the axiom of choice; C for Choice). Zermelo wrote
these axioms in 1908, with the exeptions of the Regularity Axioms (of von
Neumann, 1925) and the replacement scheme (Fraenkel, 1922). Also Skolem
considered principles related to these additional axioms. In ZFC the only
objects are sets, classes are only a convenient way to speak of formulas.

The hierarchy of normal functions defined in Section 7 has been extended
by Veblen [29] to functions with more than one argument. Schütte in [21]
studied these functions carefully and could show that they can be used for a
cosntructive representation of a segment of the ordinals far bigger than Γ0.
To this end he introduced so-called inquotesKlammersymbole to denote the
multiary Veblen-functions.

Bachmann extended the Veblen hierarchy using the first uncountable
ordinal Ω. His approach has later been extended by means of symbols for
higher number classes, first by Pfeiffer for finite number clasees and then
by Isles for transfinite number classes. However, the resulting theory was
quite complicated and difficult to work with. An idea of Feferman then
simplified the subject considerably. He introduced functions θα : On → On

for α ∈ On, that form again a hierarchy of normal functions and extend the
Veblen hierarchy. One usually writes θαβ instad of θα(β) and views θ as a
binay function. The ordinals θαβ can be defined byransfinite recursion on α,
as follows. Assume thatd θξ for every ξ < α is defined already. Let C(α, β)
be the set of all ordinals that can be generated from ordinals < β and say the
constants 0,ℵ1, . . . ,ℵω by means of the functions + and θ¹{ ξ | ξ < α }×On.
An ordinal β is aclled α-critical if β /∈ C(α, β). Than θα : On → On is
defined as the ordering function of the class of all α-critical ordinals.

Buchholz observed in [4] that the second argument β in θαβ is not used
in any essential way, and that the functions α 7→ θαℵv with v = 0, 1, . . . , ω
generate a notation system for ordinals of the same strength as the system
with the binary θ-function. He then went on and defined directly functions
ψv with v ≤ ω, that correspond to α 7→ θαℵv. More precisely he defined
ψvα for α ∈ On and v ≤ ω by transfinite recursion on α (simultaneously for
all v), as follows.

ψvα := min{ γ | γ /∈ Cv(α) },
where Cv(α) is the set of all ordinals that can be generated from the ordinals
< ℵv by the functions + and all ψu¹{ ξ | ξ < α } with u ≤ ω.

CHAPTER 6

Proof Theory

This chapter presents an example of the type of proof theory inspired
by Hilbert’s programme and the Gödel incompleteness theorems. The prin-
cipal goal will be to offer an example of a true mathematically meaningful
principle not derivable in first-order arithmetic.

The main tool for proving theorems in arithmetic is clearly the induction
schema

A(0) → (∀x.A(x) → A(S(x))) → ∀xA(x).

Here A(x) is an arbitrary formula. An equivalent form of this schema is
“cumulative” or course-of-values induction

(∀x.∀y<xA(y) → A(x)) → ∀xA(x).

Both schemes refer to the standard ordering of the natural numbers. Now
it is tempting to try to strengthen arithmetic by allowing more general
induction schemas, e.g. with respect to the lexicographical ordering of N×N.
More generally, we might pick an arbitrary well-ordering ≺ over N and use
the schema of transfinite induction:

(∀x.∀y≺x A(y) → A(x)) → ∀xA(x).

This can be read as follows. Suppose the property A(x) is “progressive”,
i.e. from the validity of A(y) for all y ≺ x we can always conclude that A(x)
holds. Then A(x) holds for all x.

One might wonder whether this schema of transfinite induction actually
strengthens arithmetic. We will prove here a classic result of Gentzen [9]
which in a sense answers this question completely. However, in order to
state the result we have to be more explicit about the well-orderings used.
This is done in the next section.

1. Ordinals Below ε0

In order to be able to speak in arithmetical theories about ordinals, we
use use a Gödelization of ordinals. This clearly is possible for countable
ordinals only. Here we restrict ourselves to a countable set of relatively
small ordinals, the ordinals below ε0. Moreover, we equip these ordinals
with an extra structure (a kind of algebra). It is then customary to speak
of ordinal notations. These ordinal notations could be introduced without
any set theory in a purely formal, combinatorial way, based on the Cantor
normal form for ordinals. However, we take advantage of the fact that we
have just dealt with ordinals within set theory. We also introduce some
elementary relations and operations for such ordinal notations, which will
be used later. For brevity we from now on use the word “ordinal” instead
of “ordinal notation”.

139

140 6. PROOF THEORY

1.1. Comparison of Ordinals; Natural Sum.

Lemma 1.1. Let ωαm + · · ·+ ωα0 and ωβn + · · ·+ ωβ0 be Cantor normal
forms (with m, n ≥ −1). Then

ωαm + · · · + ωα0 < ωβn + · · · + ωβ0

iff there is an i ≥ 0 such that αm−i < βn−i, αm−i+1 = βn−i+1, . . . , αm = βn,
or m < n and αm = βn, . . . , α0 = βn−m.

Proof. Exercise. ¤

We use the notations 1 for ω0, a for ω0 + · · · + ω0 with a copies of ω0

and ωαa for ωα + · · · + ωα again with a copies of ωα.

Lemma 1.2. Let ωαm + · · ·+ ωα0 and ωβn + · · ·+ ωβ0 be Cantor normal
forms. Then

ωαm + · · · + ωα0 + ωβn + · · · + ωβ0 = ωαm + · · · + ωαi + ωβn + · · · + ωβ0 ,

where i is minimal such that αi ≥ βn; if there is no such i, let i = m+1 (so
ωβn + · · · + ωβ0).

Proof. Exercise. ¤

One can also define a commutative variant of addition. This is the so-
called natural sum or Hessenberg sum of two ordinals. For Cantor normal
forms ωαm + · · · + ωα0 and ωβn + · · · + ωβ0 it is defined by

(ωαm + · · · + ωα0)#(ωβn + · · · + ωβ0) := ωγm+n+1 + · · · + ωγ0 ,

where γm+n+1, . . . , γ0 is a decreasing permutation of αm, . . . , α0, βn, . . . , β0.

Lemma 1.3. # is associative, commutative and strongly monotonic in
both arguments.

Proof. Exercise. ¤

1.2. Enumerating Ordinals. In order to work with ordinals in a
purely arithmetical system we set up some effective bijection between our
ordinals < ε0 and non-negative integers (i.e., a Gödel numbering). For its
definition it is useful to refer to ordinals in the form

ωαmkm + · · · + ωα0k0 with αm > · · · > α0 and ki 6= 0 (m ≥ −1).

(By convention, m = −1 corresponds to the empty sum.)
For every ordinal α we define its Gödel number pαq inductively by

pωαmkm + · · · + ωα0k0q :=
(∏

i≤m

pki

pαiq

)

− 1,

where pn is the n-th prime number starting with p0 := 2. For every non-
negative integer x we define its corresponding ordinal notation o(x) induc-
tively by

o
((∏

i≤l

pqi

i

)
− 1

)

:=
∑

i≤l

ωo(i)qi,

where the sum is to be understood as the natural sum.

Lemma 1.4. (a) o(pαq) = α,
(b) po(x)q = x.

2. PROVABILITY OF INITIAL CASES OF TI 141

Proof. This can be proved easily by induction. ¤

Hence we have a simple bijection between ordinals and non-negative
integers. Using this bijection we can transfer our relations and operations
on ordinals to computable relations and operations on non-negative integers.
We use the following abbreviations.

x ≺ y := o(x) < o(y),

ωx := pωo(x)q,
x ⊕ y := po(x) + o(y)q,
xk := po(x)kq,
ωk := pωkq,

where ω0 := 1, ωk+1 := ωωk .
We leave it to the reader to verify that ≺, λx.ωx, λxy.x⊕y, λxk.xk and

λk.pωkq are all primitive recursive.

2. Provability of Initial Cases of TI

We now derive initial cases of the principle of transfinite induction in
arithmetic, i.e., of

(∀x.∀y≺x Py → Px) → ∀x≺a Px

for some number a and a predicate symbol P , where ≺ is the standard order
of order type ε0 defined in the preceeding section. In a later section we will
see that our results here are optimal in the sense that for the full system of
ordinals < ε0 the principle

(∀x.∀y≺x Py → Px) → ∀xPx

of transfinite induction is underivable. All these results are due to Gentzen
[9].

2.1. Arithmetical Systems. By an arithmetical system Z we mean
a theory based on minimal logic in the ∀→⊥-language (including equality
axioms), with the following properties. The language of Z consists of a fixed
(possibly countably infinite) supply of function and relation constants which
are assumed to denote fixed functions and relations on the non-negative
integers for which a computation procedure is known. Among the function
constants there must be a constant S for the successor function and 0 for
(the 0-place function) zero. Among the relation constants there must be
a constant = for equality and ≺ for the ordering of type ε0 of the natural
numbers, as introduced in Section 1. In order to formulate the general
principle of transfinite induction we also assume that a unary relation symbol
P is present, which acts like a free set variable.

Terms are built up from object variables x, y, z by means of f(t1, . . . , tm),
where f is a function constant. We identify closed terms which have the
same value; this is a convenient way to express in our formal systems the as-
sumption that for each function constant a computation procedure is known.
Terms of the form S(S(. . . S(0) . . .)) are called numerals. We use the nota-
tion Sn0 or n or (only in this chapter) even n for them. Formulas are built
up from ⊥ and atomic formulas R(t1, . . . , tm), with R a relation constant or

142 6. PROOF THEORY

a relation symbol, by means of A → B and ∀xA. Recall that we abbreviate
A → ⊥ by ¬A.

The axioms of Z will always include the Peano axioms, i.e., the universal
closures of

S(x) = S(y) → x = y,(43)

S(x) = 0 → A,(44)

A(0) → (∀x.A(x) → A(S(x))) → ∀xA(x),(45)

with A(x) an arbitrary formula. We express our assumption that for every
relation constant R a decision procedure is known by adding the axiom R~n
whenever R~n is true, and ¬R~n whenever R~n is false. Concerning ≺ we
require irreflexivity and transitivity for ≺ as axioms, and also – following
Schütte – the universal closures of

x ≺ 0 → A,(46)

z ≺ y ⊕ ω0 → (z ≺ y → A) → (z = y → A) → A,(47)

x ⊕ 0 = x,(48)

x ⊕ (y ⊕ z) = (x ⊕ y) ⊕ z,(49)

0 ⊕ x = x,(50)

ωx0 = 0,(51)

ωxS(y) = ωxy ⊕ ωx,(52)

z ≺ y ⊕ ωS(x) → z ≺ y ⊕ ωe(x,y,z)m(x, y, z),(53)

z ≺ y ⊕ ωS(x) → e(x, y, z) ≺ S(x),(54)

where ⊕, λxy.ωxy, e and m denote the appropriate function constants and
A is any formula. (The reader should check that e, m can be taken to be
primitive recursive.) These axioms are formal counterparts to the properties
of the ordinal notations observed in the preceeding section. We also allow
an arbitrary supply of true formulas ∀~xA with A quantifier-free and without
P as axioms. Such formulas are called Π1-formulas (in the literature also
Π0

1-formulas).
Moreover, we may also add an ex-falso-quodlibet schema Efq or even a

stability schema Stab for A:

∀x.⊥ → A,

∀x.¬¬A → A.

Addition of Efq leads to an intuitionistic arithmetical system (the ∀→⊥-
fragment of of Heyting arithmetic HA), and addition of Stab to a classical
arithmetical system (a version of Peano arithmetic PA). Note that in our
∀→⊥-fragment of minimal logic these schemas are derivable from their in-
stances

∀~x.⊥ → R~x,

∀~x.¬¬R~x → R~x,

with R a relation constant or the special relation symbol P . Note also that
when the stability schema is present, we can replace (44), (46) and (47) by

2. PROVABILITY OF INITIAL CASES OF TI 143

their more familiar classical versions

S(x) 6= 0,(55)

x 6≺ 0,(56)

z ≺ y ⊕ ω0 → z 6= y → z ≺ y.(57)

We will also consider restricted arithmetical systems Zk. They are defined
like Z, but with the induction schema (45) restricted to formulas A of level
lev(A) ≤ k. The level of a formula A is defined by

lev(R~t) := lev(⊥) := 0,

lev(A → B) := max(lev(A) + 1, lev(B)),

lev(∀xA) := max(1, lev(A)).

However, the trivial special case of induction A(0) → ∀xA(Sx) → ∀xA,
which amounts to case distinction, is allowed for arbitrary A. (This is needed
in the proof of Theorem 2.2 below)

2.2. Gentzen’s Proof.

Theorem 2.1 (Provable Initial Cases of TI in Z). Transfinite induction
up to ωn, i.e., for arbitrary A(x) the formula

(∀x.∀y≺x A(y) → A(x)) → ∀x≺ωn A(x),

is derivable in Z.

Proof. To every formula A(x) we assign a formula A+(x) (with respect
to a fixed variable x) by

A+(x) := (∀y.∀z≺y A(z) → ∀z≺y ⊕ ωx A(z)).

We first show

If A(x) is progressive, then A+(x) is progressive,

where “B(x) is progressive” means ∀x.∀y≺x B(y) → B(x). So assume that
A(x) is progressive and

(58) ∀y≺x A+(y).

We have to show A+(x). So assume further

(59) ∀z≺y A(z)

and z ≺ y ⊕ ωx. We have to show A(z).
Case x = 0. Then z ≺ y ⊕ ω0. By (47) it suffices to derive A(z) from

z ≺ y as well as from z = y. If z ≺ y, then A(z) follows from (59), and if
z = y, then A(z) follows from (59) and the progressiveness of A(x).

Case Sx. From z ≺ y ⊕ ωSx we obtain z ≺ y ⊕ ωe(x,y,z)m(x, y, z) by
(53) and e(x, y, z) ≺ Sx by (54). From (58) we obtain A+(e(x, y, z)). By
the definition of A+(x) we get

∀u≺y ⊕ ωe(x,y,z)v A(u) → ∀u≺(y ⊕ ωe(x,y,z)v) ⊕ ωe(x,y,z) A(u)

and hence, using (49) and (52)

∀u≺y ⊕ ωe(x,y,z)v A(u) → ∀u≺y ⊕ ωe(x,y,z)S(v)A(u).

144 6. PROOF THEORY

Also from (59) and (51), (48) we obtain

∀u≺y ⊕ ωe(x,y,z)0 A(u).

Using an appropriate instance of the induction schema we can conclude

∀u≺y ⊕ ωe(x,y,z)m(x, y, z)A(u)

and hence A(z).
We now show, by induction on n, how for an arbitrary formula A(x) we

can obtain a derivation of

(∀x.∀y≺x A(y) → A(x)) → ∀x≺ωn A(x).

So assume the left hand side, i.e., assume that A(x) is progressive.
Case 0. Then x ≺ ω0 and hence x ≺ 0 ⊕ ω0 by (50). By (47) it suffices

to derive A(x) from x ≺ 0 as well as from x = 0. Now x ≺ 0 → A(x) holds
by (46), and A(0) then follows from the progressiveness of A(x).

Case n + 1. Since A(x) is progressive, by what we have shown above
A+(x) is also progressive. Applying the IH to A+(x) yields ∀x≺ωn A+(x),
and hence A+(ωn) by the progressiveness of A+(x). Now the definition of
A+(x) (together with (46) and (50)) yields ∀z≺ωωn A(z). ¤

Note that in the induction step of this proof we have derived transfinite
induction up to ωn+1 for A(x) from transfinite induction up to ωn for a
formula of level higher than the level of A(x).

We now want to refine the preceeding theorem to a corresponding result
for the subsystems Zk of Z.

Theorem 2.2 (Provable Initial Cases of TI in Zk). Let 1 ≤ l ≤ k. Then
in Zk we can derive transfinite induction for any formula A(x) of level ≤ l
up to ωk−l+2[m] for arbitrary m, i.e.

(∀x.∀y≺x A(y) → A(x)) → ∀x≺ωk−l+2[m] A(x),

where ω1[m] := m, ωi+1[m] := ωωi[m].

Proof. Note first that if A(x) is a formula of level l ≥ 1, then the
formula A+(x) constructed in the proof of the preceeding theorem has level
l + 1, and for the proof of

If A(x) is progressive, then A+(x) is progressive,

we have used induction with an induction formula of level l.
Now let A(x) be a fixed formula of level ≤ l, and assume that A(x) is

progressive. Define A0 := A, Ai+1 := (Ai)+. Then lev(Ai) ≤ l+i, and hence
in Zk we can derive that A1, A2, . . . Ak−l+1 are all progressive. Now from
the progressiveness of Ak−l+1(x) we obtain Ak−l+1(0), Ak−l+1(1), Ak−l+1(2)
and generally Ak−l+1(m) for any m, i.e., Ak−l+1(ω1[m]). But since

Ak−l+1(x) = (Ak−l)+(x) = ∀y(∀z≺y Ak−l(z) → ∀z≺y ⊕ ωx Ak−l(z))

we first get (with y = 0) ∀z≺ω2[m] Ak−l(z) and then Ak−l(ω2[m]) by the
progressiveness of Ak−l. Repeating this argument we finally obtain

∀z≺ωk−l+2[m] A0(z).

This concludes the proof. ¤

3. NORMALIZATION WITH THE OMEGA RULE 145

Our next aim is to prove that these bounds are sharp. More precisely, we
will show that in Z (no matter how many true Π1-formulas we have added
as axioms) one cannot derive “purely schematic” transfinite induction up to
ε0, i.e., one cannot derive the formula

(∀x.∀y≺x Py → Px) → ∀xPx

with a relation symbol P , and that in Zk one cannot derive transfinite
induction up to ωk+1, i.e., the formula

(∀x.∀y≺x Py → Px) → ∀x≺ωk+1 Px.

This will follow from the method of normalization applied to arithmetical
systems, which we have to develop first.

3. Normalization with the Omega Rule

We will show in Theorem 4.7 that a normalization theorem does not hold
for arithmetical systems Z, in the sense that for any formula A derivable in Z

there is a derivation of the same formula A in Z which only uses formulas of
a level bounded by the level of A. The reason for this failure is the presence
of induction axioms, which can be of arbitrary level.

Here we remove that obstacle against normalization in a somewhat dras-
tic way: we leave the realm of proofs as finite combinatory objects and
replace the induction axiom by a rule with infinitely many premises, the so-
called ω-rule (suggested by Hilbert and studied by Lorenzen, Novikov and
Schütte), which allows us to conclude ∀xA(x) from A(0), A(1), A(2), . . . , i.e.

d0

A(0)

d1

A(1)

di

. . . A(i) . . .
ω∀xA(x)

So derivations can be viewed as labelled infinite (countably branching) trees.
As in the finitary case a label consists of the derived formula and the name of
the rule applied. Since we define derivations inductively, any such derivation
tree must be well-founded, i.e., must not contain an infinite descending path.

Clearly this ω-rule can also be used to replace the rule ∀+x. As a con-
sequence we do not need to consider free individual variables.

It is plain that every derivation in an arithmetical system Z can be
translated into an infinitary derivation with the ω-rule; this will be carried
out in Lemma 3.3 below. The resulting infinitary derivation has a notewor-
thy property: in any application of the ω-rule the cutranks of the infinitely
many immediate subderivations dn are bounded, and also their sets of free
assumption variables are bounded by a finite set. Here the cutrank of a
derivation is as usual the least number ≥ the level of any subderivation
obtained by →+ as the main premise of →− or by the ω-rule as the main
premise of ∀−, where the level of a derivation is the level of its type as a
term, i.e., of the formula it derives. Clearly a derivation is called normal
iff its cutrank is zero, and we will prove below that any (possibly infinite)
derivation of finite cutrank can be transformed into a derivation of cutrank
zero. The resulting normal derivation will continue to be infinite, so the
result may seem useless at first sight. However, we will be able to bound the
depth of the resulting derivation in an informative way, and this will enable

146 6. PROOF THEORY

us in Section 4 to obtain the desired results on unprovable initial cases of
transfinite induction. Let us now carry out this programme.

N.B. The standard definition of cutrank in predicate logic measures the
depth of formulas; here one uses the level.

3.1. Infinitary Derivations. The systems Z∞ of ω-arithmetic are de-
fined as follows. Z∞ has the same language and – apart from the induction
axioms – the same axioms as Z. Derivations in Z∞ are infinite objects. It
is useful to employ a term notation for these, and we temporarily use d, e, f
to denote such (infinitary) derivation terms. For the term corresponding to
the deduction obtained by applying the ω-rule to di, i ∈ N we write 〈di〉i<ω.
However, for our purposes here it suffices to only consider derivations whose
depth is bounded below ε0.

We define the notion “d is a derivation of depth ≤ α” (written |d| ≤ α)
inductively as follows (i ranges over numerals).

(A) Any assumption variable uA with A a closed formula and any axiom
AxA is a derivation of depth ≤ α, for any α.

(→+) If dB is a derivation of depth ≤ α0 < α, then (λuA.dB)A→B is a
derivation of depth ≤ α.

(→−) If dA→B and eA are derivations of depths ≤ αi < α (i=1,2), then
(dA→BeA)B is a derivation of depth ≤ α.

(ω) For all A(x), if d
A(i)
i are derivations of depths ≤ αi < α (i < ω),

then (〈dA(i)
i 〉i<ω)∀xA is a derivation of depth ≤ α.

(∀−) For all A(x), if d∀xA(x) is a derivation of depth ≤ α0 < α, then, for

all i, (d∀xA(x)i)A(i) is a derivation of depth ≤ α.

We will use |d| to denote the least α such that |d| ≤ α.
Note that in (∀−) it suffices to use numerals as minor premises. The

reason is that we only need to consider closed terms, and any such term is
in our setup identified with a numeral.

The cutrank cr(d) of a derivation d is defined by

cr(uA) := cr(AxA) := 0,

cr(λud) := cr(d),

cr(dA→BeA) :=

{

max(lev(A → B), cr(d), cr(e)), if d = λud′,

max(cr(d), cr(e)), otherwise,

cr(〈di〉i<ω) := sup
i<ω

cr(di),

cr(d∀xA(x)j) :=

{

max(lev(∀xA(x)), cr(d)), if d = 〈di〉i<ω,

cr(d), otherwise.

Clearly cr(d) ∈ N∪ {ω} for all d. For our purposes it will suffice to consider
only derivations with finite cutranks (i.e., with cr(d) ∈ N) and with finitely
many free assumption variables.

Lemma 3.1. If d is a derivation of depth ≤ α, with free assumption
variables among u, ~u and of cutrank cr(d) = k, and e is a derivation of
depth ≤ β, with free assumption variables among ~u and of cutrank cr(e) = l,

3. NORMALIZATION WITH THE OMEGA RULE 147

then d[u := e] is a derivation with free assumption variables among ~u, of
depth |d[u := e]| ≤ β + α and of cutrank cr(d[u := e]) ≤ max(lev(e), k, l).

Proof. Straightforward induction on the depth of d. ¤

Using this lemma we can now embed our systems Zk (i.e., arithmetic
with induction restricted to formulas of level ≤ k) and hence Z into Z∞. In
this embedding we refer to the number nI(d) of nested applications of the
induction schema within a Zk-derivation d.

The nesting of applications of induction in d, nI(d), is defined by induc-
tion on d, as follows.

nI(u) := nI(Ax) := 0,

nI(Ind) := 1,

nI(Ind~tde) := max(nI(d), nI(e) + 1),

nI(de) := max(nI(d), nI(e)), if d is not of the form Ind~td0,

nI(λud) := nI(λxd) := nI(dt) := nI(d).

3.2. Long Normal Form. For the next lemma we need the notion of
the long normal form of a derivation. In Subsection 3.7 of Chapter 1 we
have studied the form of normal derivations in minimal logic. We considered
the notion of a track and observed, that in every track all elimination rules
precede all introduction rules, and that in a uniquely determined minimal
node we encounter a minimal formula, that is a subformula of any formula
in the elimination part as well as in the introduction part of the track. In
the notion of a long normal form we additionally require that every minimal
formula is atomic.

For simplicity we restrict ourselves to the →-fragment of minimal propo-
sitional logic; however, our considerations are valid for the full language as
well.

For terms of the typed λ-calculus we define the η-expansion of a variable
by

ηV (x~τ→ι) := λ~z~τ .xηV (~z),

so by induction on the type of the variable. The η-expansion of a term can
then be defined by induction on terms:

η
(
λ~y.(x ~M)~τ→ι

)
:= λ~y, ~z~τ .xη(~M)ηV (~z).

Note that we always have η(x) = ηV (x). – Hence clearly:

Lemma 3.2. Every term can be transformed into long normal form, by
first normalizing and then η-expanding it.

3.3. Embedding of Zk.

Lemma 3.3. Let a Zk-derivation in long normal form be given with ≤ m
nested applications of the induction schema, i.e., of

A(0) → (∀x.A(x) → A(Sx)) → ∀xA(x),

all with lev(A) ≤ k. We consider subderivations dB not of the form Ind~t or
Ind~td0. For every such subderivation and closed substitution instance Bσ of
B we construct (d∞σ)Bσ in Z∞ with free assumption variables uCσ for uC

148 6. PROOF THEORY

free assumption of d, such that |d∞σ | < ωm+1 and cr(d∞σ) ≤ k, and moreover
such that d is obtained by →+ iff d∞σ is, and d is obtained by ∀+ or of the
form Ind~td0e iff d∞σ is obtained by the ω-rule.

Proof. By recursion on such subderivations d.
Case uC or Ax. Take uCσ or Ax.
Case Ind~tde′. Since the deduction is in long normal form, e′ = λxv.e.

By IH we have d∞σ and e∞σ . (Note that neither d nor e can have one of the
forbidden forms Ind~t and Ind~td0, since both are in long normal form). Write
e∞σ (t, f) for e∞σ [x, v := t, f], and let

(Ind~td(λxv.e))∞σ := 〈d∞σ , e∞σ (0, d∞σ), e∞σ (1, e∞σ (0, d∞σ)), . . . 〉.
By IH |e∞σ | ≤ ωm−1·p and |d∞σ | ≤ ωm·q for some p, q < ω. By Lemma 3.1
we obtain

|e∞σ (0, d∞σ)| ≤ ωm·q + ωm−1·p,

|e∞σ (1, e∞σ (0, d∞σ))| ≤ ωm·q + ωm−1·2p

and so on, and hence

|(Ind d(λxv.e))∞σ | ≤ ωm·(q + 1).

Concerning the cutrank we have by IH cr(d∞σ), cr(e∞σ) ≤ k. Therefore

cr(e∞σ (0, d∞σ)) ≤ max(lev(A(0)), cr(d∞σ), cr(e∞σ)) ≤ k,

cr(e∞σ (1, e∞σ (0, d∞σ))) ≤ max(lev(A(1)), k, cr(e∞σ)) = k,

and so on, and hence

cr((Ind d(λxv.e))∞σ) ≤ k.

Case λuC .dB. By IH, we have (d∞σ)Bσ with possibly free assumptions
uCσ. Take (λu.d)∞σ := λuCσ.d∞σ .

Case de, with d not of the form Ind~t or Ind~td0. By IH we have d∞σ
and e∞σ . Since de is subderivation of a normal derivation we know that d
and hence also d∞σ is not obtained by →+. Therefore (de)∞σ := d∞σ e∞σ is
normal and cr(d∞σ e∞σ) = max(cr(d∞σ), cr(e∞σ)) ≤ k. Also we clearly have
|d∞σ e∞σ | < ωm+1.

Case (λx.d)∀xB(x). By IH for every i and substitution instance B(i)σ
we have d∞σ,i. Take (λx.d)∞σ := 〈d∞σ,i〉i<ω.

Case (dt)B[x:=t]. By IH, we have (d∞σ)(∀xB)σ. Let j be the numeral
with the same value as tσ. If d∞σ = 〈di〉i<ω (which can only be the case
if d = Ind~td0e0, for dt is a subderivation of a normal derivation), take
(dt)∞σ := dj . Otherwise take (dt)∞σ := d∞σ j ¤

3.4. Normalization for Z∞. A derivation is called convertible or a
redex if it is of the form (λu.d)e or else 〈di〉i<ωj, which can be converted
into d[u := e] or dj , respectively. A derivation is called normal if it does not
contain a convertible subderivation. Note that a derivation is normal iff it
is of cutrank 0.

Call a derivation a simple application if it is of the form d0d1 . . . dm with
d0 an assumption variable or an axiom.

We want to define an operation which by repeated conversions trans-
forms a given derivation into a normal one with the same end formula and

4. UNPROVABLE INITIAL CASES OF TRANSFINITE INDUCTION 149

no additional free assumption variables. The usual methods to achieve such
a task have to be adapted properly in order to deal with the new situation
of infinitary derivations. Here we give a particularly simple argument due
to Tait [26].

Lemma 3.4. For any derivation dA of depth ≤ α and cutrank k + 1 we
can find a derivation (dk)A with free assumption variables contained in those
of d, which has depth ≤ 2α and cutrank ≤ k.

Proof. By induction on α. The only case which requires some ar-
gument is when the derivation is of the form de with |d| ≤ α1 < α and
|e| ≤ α2 < α, but is not a simple application. We first consider the sub-
case where dk = λu.d1(u) and lev(d) = k + 1. Then lev(e) ≤ k by the
definition of level (recall that the level of a derivation was defined to be
the level of the formula it derives), and hence d1[u := ek] has cutrank ≤ k
by Lemma 3.1. Furthermore, also by Lemma 3.1, d1[u := ek] has depth

≤ 2α2 +2α1 ≤ 2max(α2,α1)+1 ≤ 2α. Hence we can take (de)k to be d1[u := ek].
In the subcase where dk = 〈di〉i<ω, lev(d) = k + 1 and ek = j we can

take (de)k to be dj , since clearly dj has cutrank ≤ k and depth ≤ 2α. If

we are not in the above subcases, we can simply take (de)k to be dkek.
This derivation clearly has depth ≤ 2α. Also it has cutrank ≤ k, which can
be seen as follows. If lev(d) ≤ k + 1 we are done. But lev(d) ≥ k + 2 is
impossible, since we have assumed that de is not a simple application. In
order to see this, note that if de is not a simple application, it must be of
the form d0d1 . . . dne with d0 not an assumption variable or axiom and d0

not itself of the form d′d′′; then d0 must end with an introduction →+ or
ω, hence there is a cut of a degree exceeding k + 1, which is excluded by
assumption. ¤

As an immediate consequence we obtain:

Theorem 3.5 (Normalization for Z∞). For any derivation dA of depth
≤ α and cutrank ≤ k we can find a normal derivation (d∗)A with free as-
sumption variables contained in those of d, which has depth ≤ 2α

k , where

2α
0 := α, 2α

m+1 := 22α
m.

As in Section 3.7 of Chapter 1 we can now analyze the structure of
normal derivations in Z∞. In particular we obtain:

Theorem 3.6 (Subformula Property for Z∞). Let d be a normal deduc-
tion in Z∞ for Γ ` A. Then each formula in d is a subformula of a formula
in Γ ∪ {A}.

Proof. We prove this for tracks of order n, by induction on n. ¤

4. Unprovable Initial Cases of Transfinite Induction

We now apply the technique of normalization for arithmetic with the
ω-rule to obtain a proof that transfinite induction up to ε0 is underivable in
Z, i.e., a proof of

Z 6` (∀x.∀y≺x Py → Px) → ∀xPx

150 6. PROOF THEORY

with a relation symbol P , and that transfinite induction up to ωk+1 is unde-
rivable in Zk, i.e., a proof of

Zk 6` (∀x.∀y≺x Py → Px) → ∀x≺ωk+1 Px.

It clearly suffices to prove this for arithmetical systems based on classical
logic. Hence we may assume that we have used only the classical versions
(55), (56) and (57) of the axioms from Subsection 2.1.

Our proof is based on an idea of Schütte, which consists in adding a
so-called progression rule to the infinitary systems. This rule allows us to
conclude Pj (where j is any numeral) from all Pi for i ≺ j.

4.1. Progression Rule. More precisely, we define the notion of a
derivation in Z∞ + Prog(P) of depth ≤ α by the inductive clauses above
and the additional clause Prog(P):

(Prog) If for all i ≺ j we have derivations dPi
i of depths ≤ αi < α, then

〈dPi
i 〉Pj

i≺j is a derivation of depth ≤ α.

We also define cr(〈di〉i≺j) := supi≺j cr(di).
Since this progression rule only deals with derivations of atomic formulas,

it does not affect the cutranks of derivations. Hence the proof of normal-
ization for Z∞ carries over unchanged to Z∞ + Prog(P). In particular we
have

Lemma 4.1. For any derivation dA in Z∞ + Prog(P) of depth ≤ α and
cutrank ≤ k + 1 we can find a derivation (dk)A in Z∞ + Prog(P) with free
assumption variables contained in those of d, which has depth ≤ 2α and
cutrank ≤ k.

We now show that from the progression rule for P we can easily derive
the progressiveness of P .

Lemma 4.2. We have a normal derivation of ∀x.∀y≺x Py → Px in
Z∞ + Prog(P) with depth 5.

Proof.

. . .

. . .

∀y≺j Py
∀−i ≺ j → Pi i ≺ j

→−
Pi . . . (all i ≺ j)

Prog
Pj

→+
∀y≺j Py → Pj . . . (all j)

ω∀x.∀y≺x Py → Px

¤

4.2. Quasi-Normal Derivations. The crucial observation now is that
a normal derivation of Ppβq must essentially have a depth of at least β.
However, to obtain the right estimates for the subsystems Zk we cannot
apply Lemma 4.1 down to cutrank 0 (i.e., to normal form) but must stop
at cutrank 1. Such derivations, i.e., those of cutrank ≤ 1, will be called
quasi-normal ; they can also be analyzed easily.

We begin by showing that a quasi-normal derivation of a quantifier-free
formula can always be transformed without increasing its cutrank or its
depth into a quasi-normal derivation of the same formula which

4. UNPROVABLE INITIAL CASES OF TRANSFINITE INDUCTION 151

(1) does not use the ω-rule, and
(2) contains ∀− only in the initial part of a track starting with an

axiom.

Recall that our axioms are of the form ∀~xA with A quantifier-free.
The quasi-subformulas of a formula A are defined by the clauses

(a) A, B are quasi-subformulas of A → B;
(b) A(i) is a quasi-subformula of ∀xA(x), for all numerals i;
(c) If A is a quasi-subformula of B, and C is an atomic formula, then C → A

and ∀xA are quasi-subformulas of B;
(d) “. . . is quasi-subformula of . . . ” is a reflexive and transitive relation.

For example, Q → ∀x.P → A, P, Q atomic, is a quasi-subformula of
A → B.

We now transfer the subformula property for normal derivations (Theo-
rem 3.6) to a quasi-subformula property for quasi-normal derivations.

Theorem 4.3 (Quasi-Subformula Property). Let d be a quasi-normal
deduction in Z∞ + Prog(P) for Γ ` A. Then each formula in d is a quasi-
subformula of a formula in Γ ∪ {A}.

Proof. We prove this for tracks of order n, by induction on n. ¤

Corollary 4.4. Let d be a quasi-normal deduction in Z∞ + Prog(P)
of a formula ∀~xA with A quantifier-free from quantifier-free assumptions.
Then any track in d of positive order ends with a quantifier-free formula.

Proof. If not, then the major premise of the →− whose minor premise
is the offending end formula of the track, would contain a quantifier to the
left of →. This contradicts Theorem 4.3. ¤

4.3. Elimination of the Omega Rule. Our next aim is to eliminate
the ω-rule. For this we need the notion of an instance of a formula, defined
by the following clauses.

(a) If B′ is an instance of B and A is quantifier-free, then A → B′ is an
instance of A → B;

(b) A(i) is an instance of ∀xA(x), for all numerals i;
(c) The relation “. . . is an instance of . . . ” is reflexive and transitive.

Lemma 4.5. Let d be a quasi-normal deduction in Z∞ + Prog(P) of
a formula A without ∀ to the left of → from quantifier-free assumptions.
Then for any quantifier-free instance A′ of A we can find a quasi-normal
derivation d′ of A′ from the same assumptions such that

(a) d′ does not use the ω-rule,
(b) d′ contains ∀− only in the initial elimination part of a track starting

with an axiom, and
(c) |d′| ≤ |d|.

Proof. By induction on the depth of d. We distinguish cases according
to the last rule in d.

Case →−.

A → B A →−
B

152 6. PROOF THEORY

By the quasi-subformula property A must be quantifier-free. Let B′ be a
quantifier-free instance of B. Then by definition A → B′ is a quantifier-free
instance of A → B. The claim now follows from the IH.

Case →+.

B →+
A → B

Any instance of A → B has the form A → B′ with B′ an instance of B.
Hence the claim follows from the IH.

Case ∀−.

∀xA(x) i
∀−

A(i)

Then any quantifier-free instance of A(i) is also a quantifier-free instance of
∀xA(x), and hence the claim follows from the IH.

Case ω.

. . . A(i) . . . (all i < ω)
ω∀xA(x)

Any quantifier-free instance of ∀xA(x) has the form A(i)′ with A(i)′ a quan-
tifier-free instance of A(i). Hence the claim again follows from the IH. ¤

A derivation d in Z∞ + Prog(P) is called a P~α,¬P ~β-refutation if ~α and
~β are disjoint and d derives a formula ~A → B := A1 → · · · → Ak → B with
~A and the free assumptions in d among Ppα1q, . . . , Ppαmq,¬Ppβ1q, . . . ,
¬Ppβnq or true quantifier-free formulas without P , and B a false quantifier-
free formula without P or else among Ppβ1q, . . . , Ppβnq.

(So, classically, a P~α,¬P ~β-refutation shows
∧∧

i Ppαiq → ∨∨

j Ppβjq.)

Lemma 4.6. Let d be a quasi-normal P~α,¬P ~β-refutation. Then

min(~β) ≤ |d| + lh(~α′),

where ~α′ is the sublist of ~α consisting of all αi < min(~β), and lh(~α′) denotes
the length of the list ~α′.

Proof. By induction on |d|. By the Lemma above we may assume that
d does not contain the ω-rule, and contains ∀− only in a context where
leading universal quantifiers of an axiom are removed. We distinguish cases
according to the last rule in d.

Case →+. By our definition of refutations the claim follows immediately
from the IH.

Case →−. Then d = fC→(~A→B)eC . If C is a true quantifier-free formula

without P or of the form Ppγq with γ < min(~β), the claim follows from the
IH for f :

min(~β) ≤ |f | + lh(~α′) + 1 ≤ |d| + lh(~α′).

If C is a false quantifier-free formula without P or of the form Ppγq with

min(~β) ≤ γ, the claim follows from the IH for e:

min(~β) ≤ |e| + lh(~α′) + 1 ≤ |d| + lh(~α′).

It remains to consider the case when C is a quantifier-free implication in-

volving P . Then lev(C) ≥ 1, hence lev(C → (~A → B)) ≥ 2 and therefore

4. UNPROVABLE INITIAL CASES OF TRANSFINITE INDUCTION 153

(since cr(d) ≤ 1) f must be a simple application starting with an axiom.
Now our only axioms involving P are EqP : ∀x, y.x = y → Px → Py and
StabP colon∀x.¬¬Px → Px, and of these only StabP has the right form.
Hence f = StabP pγq and therefore e : ¬¬Ppγq. Now from lev(¬¬Ppγq) = 2,
the assumption cr(e) ≤ 1 and again the form of our axioms involving P , it
follows that e must end with →+, i.e., e = λu¬Ppγq.e⊥0 . So we have

f

¬¬Ppγq → Ppγq

[u : ¬Ppγq]
e0

⊥
¬¬Ppγq

Ppγq

The claim now follows from the IH for e0.
Case ∀−. By assumption we then are in the initial part of a track

starting with an axiom. Since d is a P~α,¬P ~β-refutation, that axiom must
contain P . It cannot be the equality axiom EqP : ∀x, y.x = y → Px → Py,
since pγq = pδq → Ppγq → Ppδq can never be (whether γ = δ or γ 6= δ)

the end formula of a P~α,¬P ~β-refutation. For the same reason it can not
be the stability axiom StabP : ∀x.¬¬Px → Px). Hence the case ∀− cannot
occur.

Case Prog(P). Then d = 〈dPpδq

δ 〉Ppγq

δ<γ . By assumption on d, γ is in

~β. We may assume γ = βi := min(~β), for otherwise the premise deduction

dβi
: Ppβiq would be a quasi-normal P~α,¬P ~β-refutation, to which we could

apply the IH.
If there are no αj < γ, then the argument is simple: every dδ is a

P~α,¬P ~β,¬Pδ-refutation, so by IH, since also no αj < δ,

min(~β, δ) = δ ≤ dp(dδ),

hence γ = min(~β) ≤ |d|.
To deal with the situation that some αj are less than γ, we observe that

there can be at most finitely many αj immediately preceeding γ; so let ε be
the least ordinal such that

∀δ.ε ≤ δ < γ → δ ∈ ~α.

Then ε, ε + 1, . . . , ε + k − 1 ∈ ~α, ε + k = γ. We may assume that ε is either
a successor or a limit. If ε = ε′ + 1, it follows by the IH that since dε′ is a

P~α,¬P ~β,¬P (ε − 1)-refutation,

ε − 1 ≤ dp(dε−1) + lh(~α′) − k,

where ~α′ is the sequence of αj < γ. Hence ε ≤ |d| + lh(~α′) − k, and so

γ ≤ |d| + lh(~α′).

If ε is a limit, there is a sequence 〈δf(n)〉n with limit ε, and with all αj < ε
below δf(0), and so by IH

δf(n) ≤ dp(df(n)) + lh(~α′) − k,

and hence ε ≤ |dε| + lh(~α′) − k, so γ ≤ |d| + lh(~α′). ¤

154 6. PROOF THEORY

4.4. Underivability of Transfinite Induction.

Theorem. Transfinite induction up to ε0 is underivable in Z, i.e.

Z 6` (∀x.∀y≺x Py → Px) → ∀xPx

with a relation symbol P , and for k ≥ 3 transfinite induction up to ωk+1 is
underivable in Zk, i.e.,

Zk 6` (∀x.∀y≺x Py → Px) → ∀x≺ωk+1 Px.

Proof. We restrict ourselves to the second part. So assume that trans-
finite induction up to ωk+1 is derivable in Zk. Then by the embedding
of Zk into Z∞ and the normal derivability of the progressiveness of P in
Z∞ + Prog(P) with finite depth we can conclude that ∀x≺ωk+1 Px is deriv-
able in Z∞+Prog(P) with depth < ωm+1 and cutrank ≤ k. (Note that here
we need k ≥ 3, since the formula expressing transfinite induction up to ωk+1

has level 3). Now k − 1 applications of Lemma 4.1 yield a derivation of the

same formula ∀x≺ωk+1 Px in Z∞ + Prog(P) with depth γ < 2ωm+1

k−1 < ωk+1

and cutrank ≤ 1.
Hence there is also a quasi-normal derivation of Ppγ + 3q in Z∞ +

Prog(P) with depth γ + 2 and cutrank ≤ 1, of the form

d
∀x≺ωk+1Px

pγ + 3q ≺ ωk+1 → Ppγ + 3q

d′

pγ + 3q ≺ ωk+1

Ppγ + 3q

where d′ is a deduction of finite depth (it may even be an axiom, depend-
ing on the precise choice of axioms for Z); this contradicts the lemma just
proved. ¤

4.5. Normalization for Arithmetic is Impossible. The normaliza-
tion theorem for first-order logic applied to one of our arithmetical systems
Z is not particularly useful since we may have used in our derivation induc-
tion axioms of arbitrary complexity. Hence it is tempting to first eliminate
the induction schema in favour of an induction rule allowing us to conclude
∀xA(x) from a derivation of A(0) and a derivation of A(Sx) with an ad-
ditional assumption A(x) to be cancelled at this point (note that this rule
is equivalent to the induction schema), and then to try to normalize the
resulting derivation in the new system Z with the induction rule. We will
apply Gentzen’s Theorems on Underivability and Derivability of Transfinite
Induction to show that even a very weak form of the normalization theorem
cannot hold in Z with the induction rule.

Theorem. The following weak form of a normalization theorem for Z

with the induction rule is false: “For any derivation dB with free assumption

variables among ~u
~A for formulas ~A, B of level ≤ l there is a derivation (d∗)B,

with free assumption variables contained in those of d, which contains only
formulas of level ≤ k, where k depends on l only.”

Proof. Assume that such a normalization theorem holds. Consider the
formula

(∀x.∀y≺x Py → Px) → ∀x≺ωn+1 Px

4. UNPROVABLE INITIAL CASES OF TRANSFINITE INDUCTION 155

expressing transfinite induction up to ωn+1, which is of level 3. By Gentzen’s
Theorems on Derivability of Transfinite Induction it is derivable in Z. Now
from our assumption it follows that there exists a derivation of this formula
containing only formulas of level ≤ k, for some k independent of n. Hence
Zk derives transfinite induction up to ωn+1 for any n. But this clearly
contradicts theorem above (Underivability of Transfinite Induction). ¤

Bibliography

1. E.W. Beth, Semantic construction of intuitionistic logic, Medelingen de KNAW N.S.
19 (1956), no. 11.

2. , The foundations of mathematics, North–Holland, Amsterdam, 1959.
3. Egon Börger, Erich Grädel, and Yuri Gurevich, The classical decision problem, Per-

spectives in Mathematical Logic, Springer Verlag, Berlin, Heidelberg, New York, 1997.
4. Wilfried Buchholz, A new system of proof–theoretic ordinal functions, Annals of Pure

and Applied Logic 32 (1986), no. 3, 195–207.
5. Georg Cantor, Beträge zur Begründung der transfiniten Mengenlehre, Mathematische

Annalen 49 (1897).
6. C.C. Chang and H.J. Keisler, Model theory, 3rd ed., Studies in Logic, vol. 73, North–

Holland, Amsterdam, 1990.
7. Nicolaas G. de Bruijn, Lambda calculus notation with nameless dummies, a tool for

automatic formula manipulation, with application to the Church-Rosser theorem, Inda-
gationes Math. 34 (1972), 381–392.

8. Gerhard Gentzen, Untersuchungen über das logische Schließen, Mathematische Zeit-
schrift 39 (1934), 176–210, 405–431.

9. Gerhard Gentzen, Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der trans-

finiten Induktion in der reinen Zahlentheorie, Mathematische Annalen 119 (1943),
140–161.

10. Kurt Gödel, Die Vollständigkeit der Axiome des logischen Funktionenkalküls, Monat-
shefte für Mathematik und Physik 37 (1930), 349–360.

11. Kurt Gödel, Über formal unentscheidbare Sätze der Principia Mathematica und ver-

wandter Systeme I, Monatshefte für Mathematik und Physik 38 (1931), 173–198.
12. David Hilbert and Paul Bernays, Grundlagen der Mathematik II, second ed.,

Grundlehren der mathematischen Wissenschaften, vol. 50, Springer–Verlag, Berlin,
1970.

13. Felix Joachimski and Ralph Matthes, Short proofs of normalisation for the simply-

typed λ-calculus, permutative conversions and Gödel’s T , Archive for Mathematical
Logic 42 (2003), 59–87.

14. Ingebrigt Johansson, Der Minimalkalkül, ein reduzierter intuitionistischer Formalis-

mus, Compositio Mathematica 4 (1937), 119–136.
15. Stephen C. Kleene, Introduction to metamathematics, D. van Nostrand Comp., New

York, 1952.
16. L. Löwenheim, Über Möglichkeiten im Relativkalkül, Mathematische Annalen 76

(1915), 447–470.
17. A. Malzew, Untersuchungen aus dem Gebiete der mathematischen Logik, Rec. Math.

N. S. 1 (1936), 323–336.
18. M.H.A. Newman, On theories with a combinatorial definition of “equivalence”, Annals

of Mathematics 43 (1942), no. 2, 223–243.
19. V.P. Orevkov, Lower bounds for increasing complexity of derivations after cut elimi-

nation, Zapiski Nauchnykh Seminarov Leningradskogo 88 (1979), 137–161.
20. Dag Prawitz, Natural deduction, Acta Universitatis Stockholmiensis. Stockholm Stud-

ies in Philosophy, vol. 3, Almqvist & Wiksell, Stockholm, 1965.
21. Kurt Schütte, Kennzeichnung von Ordinalzahlen durch rekursiv definierte Funktionen,

Mathematische Annalen 127 (1954), 16–32.
22. J.C. Shepherdson and H.E. Sturgis, Computability of recursive functions, J. Ass. Com-

puting Machinery 10 (1963), 217–255.

157

158 BIBLIOGRAPHY

23. Joseph R. Shoenfield, Mathematical logic, Addison–Wesley Publ. Comp., Reading,
Massachusetts, 1967.

24. T. Skolem, Logisch–kombinatorische Untersuchungen über die Erfüllbarkeit oder Be-

weisbarkeit mathematischer Sätze nebst einem Theorem über dichte Mengen, Skrifter
utgitt av Videnkapsselskapet i Kristiania, I, Mat. Naturv. Kl. 4 (1920), 36 pp.

25. Richard Statman, Bounds for proof-search and speed-up in the predicate calculus, An-
nals of Mathematical Logic 15 (1978), 225–287.

26. William W. Tait, Infinitely long terms of transfinite type I, Formal Systems and Re-
cursive Functions (J. Crossley and M. Dummett, eds.), North–Holland, Amsterdam,
1965, pp. 176–185.

27. Anne S. Troelstra and Helmut Schwichtenberg, Basic proof theory, 2nd ed., Cambridge
University Press, 2000.

28. Femke van Raamsdonk and Paula Severi, On normalisation, Computer Science Report
CS-R9545 1995, Centrum voor Wiskunde en Informatica, 1995, Forms a part of van
Raamsdonk’s thesis from 1996.

29. Oswald Veblen, Continuous increasing functions of finite and transfinite ordinals,
Transactions AMS 9 (1908), 280–292.

Index

R-transitive closure, 104
Σ1-formulas

of the language L1, 86

dp(A), 3
|A|, 3
FV, 4
→, 12
←,←+,←∗, 13
→+, 12
→∗, 13
A(t), 4, 77

E [~x := ~t], 4
E [x := t], 4
all class, 93
application

simple, 148
arithmetic

Peano, 142
arithmetical system, 141

classical, 142
intuitionistic, 142
restricted, 143

assignment, 33
assumption, 6

closed, 6
open, 6

axiom of choice, 44, 45, 47, 120, 121
axiom system, 48

bar, 36
Beth-structure, 35
branch, 36

generic, 43
main, 30

Bruijn, de, 3

Cantor
Theorem of, 116

Cantor-Bernstein
theorem of, 116

cardinal, 117
regular, 123
singular, 123

cardinality, 121
carrier set, 33
cartesian product, 94
Church–Rosser property, 16

weak, 16
class, 92

bounded, 134
closed, 134
closed unbounded, 134
inductive, 99
normal, 134
proper, 93
transitive, 99
well-founded, 107

classes
equal, 93

closure, 12, 24
coincidence lemma, 37
composition, 94
concatenation, 63
conclusion, 5, 6
confinal, 123
confinality, 123
confluent, 16

weakly, 16
congruence relation, 48
conjunction, 7, 21
connex, 107
consistency, 87
consistent set of formulas, 44
constant, 2
continuum hypothesis

generalized, 125
continuum hypothesis, 125
conversion rule, 12, 24
countable, 48
CR, 16
critical ε-number, 135
cumulative type structure, 91
Curry-Howard correspondence, 12
cut, 29
cutrank, 146

decoding, 63
Dedekind-finite, 122
Dedekind-infinite, 122
definability

explicit, 31
depth (of a formula), 3
derivability conditions, 89
derivable, 8

159

160 INDEX

derivation, 5
convertible, 148
normal, 29, 148
quasi-normal, 150

derivative, 135
disjunction, 7, 21

classical, 2
domain, 33, 94
dot notation, 3

E-part, 30
E-rule, 6
element, 92

maximal, 120
elementarily enumerable, 67
elementarily equivalent, 49
elementary equivalent, 47
elementary functions, 58
elimination, 23
elimination part, 30
equality, 8
equality axioms, 48
equinumerous, 116
η-expansion

of a term, 147
of a variable, 147

ex-falso-quodlibet, 5
ex-falso-quodlibet schema, 142
existence elimination, 18
existence introduction, 18
existential quantifier, 7, 21

classical, 2
expansion, 47
explicit definability, 31
extensionality axiom, 92

F -product structure, 45
falsity, 8
field, 52

archimedian ordered, 52
ordered, 52

fields
ordered, 52

filter, 44
finite, 122
finite intersection property, 45
finitely axiomatizable, 53
fixed point

least, 69
formula, 2

atomic, 2
negative, 10
Π1-, 142
prime, 2
Rasiowa-Harrop, 31

formula occurrence, 17
free (for a variable), 3
Friedman, 39

function, 94
bijective, 94
computable, 68
continuous, 134
elementary, 58
injective, 94
monotone, 134
µ-recursive, 67
recursive, 72
representable, 79
subelementary, 58
surjective, 94

function symbol, 2

Gödel β-function, 62
Gödel number, 73
Gentzen, 1, 139, 141
G ödel-Gentzen translation g, 10
Gödel’s β function, 83

Hartogs number, 118
Hessenberg sum, 140

I-part, 30
I-rule, 6
image, 94
Incompleteness Theorem

First, 81
indirect proof, 5
Induction

transfinite on On, 112
induction

course-of-values, on ω, 101
on ω, 99
transfinite, 139
transfinite on On, different forms, 112

Induction theorem, 97
inductively defined predicate, 8
infinite, 48, 122
infinity axiom, 99
infix notation, 3
inner reductions, 12, 25
instance of a formula, 151
instruction number, 64
interpretation, 33
introduction part, 30
intuitionistic logic, 5
inverse, 94
isomorphic, 49

Klammersymbol, 138
Kleene, 55
Kuratowski pair, 94

Löwenheim, 44
language

elementarily presented, 73
leaf, 36
least number operator, 58

INDEX 161

lemma
Newman’s, 16

length, 63
length of a formula, 3
length of a segment, 29
level

of a derivation, 145
level of a formula, 143
limit, 111
logic

classical, 9
intuitionistic, 8
minimal, 8

marker, 6
maximal segment, 29
minimal formula, 147
minimal node, 147
minimum part, 29
model, 48
modus ponens, 6
monotone enumeration, 134
Mostowski

isomorphy theorem of, 106

natural numbers, 99
natural sum, 140
negation, 2
Newman, 16
Newman’s lemma, 16
node

consistent, 42
stable, 42

non standard model, 51
normal derivation, 29
normal form, 13

long, 147
Normal Form Theorem, 65
normal function, 134
normalizing

strongly, 13
notion of truth, 79
numbers

natural, 99
numeral, 77

of cardinality n, 48
order of a track, 30
ordering

linear, 107
partial, 120

ordering function, 134
ordinal, 107

strongly critical, 136
ordinal class, 107
ordinal notation, 139
Orevkov, 18

parentheses, 3
part

elimination, 30
introduction, 30
minimum, 29
strictly positive, 4

Peano arithmetic, 90
Peano axioms, 51, 142
Peano-axioms, 101
Peirce formula, 39
permutative conversion, 20
power set axiom, 95
pre-structure, 33
predicate symbol, 2
premise, 5, 6

major, 6, 22
minor, 6, 22

principal number
additive, 133

principle of least element, 101
principle of indirect proof, 9
progression rule, 150
progressive, 101, 143
proof, 5
propositional symbol, 2

quasi-subformulas, 151
quotient structure, 48

range, 94
rank, 114
Rasiowa-Harrop formula, 31
Recursion Theorem, 97
recursion theorem

first, 70
redex, 148

β, 12, 24
permutative, 24

reduct, 47
reduction, 13

generated, 13
one-step, 12
proper, 13

reduction sequence, 13
reduction tree, 13
register machine computable, 57
register machine, 55
Regularity Axiom, 114
relation, 94

definable, 77
elementarily enumerable, 67
elementary, 60
extensional, 105
representable, 79
transitively well-founded, 96
well-founded, 105

relation symbol, 2
renaming, 3

162 INDEX

replacement scheme, 95
representability, 79
restriction, 94
Rosser, 81
rule, 6

progression, 150
Russell class, 93
Russell’s antinomy, 91

satisfiable set of formulas, 44
segment, 29

maximal, 29
minimum, 29

separation scheme, 95
sequence

reduction, 13
sequent, 74
set, 92

pure, 92
set of formulas

Σ0
1-definable, 76

set of formulas
definable, 77
elementary, 76
recursive, 76

Shoenfield principle, 92
signature, 2
simplification conversion, 30
size of a formula, 3
Skolem, 44
sn, 14
soundness theorem, 38
s.p.p., 4
stability, 5, 9
stability schema, 142
state

of computation, 65
Statman, 18
strictly positive part, 4
strongly normalizing, 13
structure, 33
subformula, 4

literal, 4
negative, 4
positive, 4
strictly positive, 4

subformula (segment), 29
subformula property, 30
substitution, 3, 4
substitution lemma, 37
substitutivity, 14
successor number, 111
symbol number, 73

Tait, 149
term, 2
theory, 49

axiomatized, 77

completee, 49
consistent, 77
elementarily axiomatizable, 76
inconsistent, 77
of M, 49
recursively axiomatizable, 76

track, 17, 29, 147
main, 30

transitive closure, 105
transitive relation, 96
tree

reduction, 13
unbounded, 36

truth, 77
truth formula, 79
Turing, 55

U -ultraproduct, 45
ultrafilter, 44
ultrapower, 47
union axiom, 94
universe, 93
upper bound, 120
urelement, 91

validity, 34
variable, 2

assumption, 6
free, 4
object, 6

variable condition, 6, 12, 21, 23
Veblen hierarchy, 135
von Neumann levels, 113

WCR, 16
well ordering theorem, 120
well-ordering, 107

Zorn’s Lemma, 120
Zorns lemma, 44

